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Abstract

This study presents an efficient implementation of the Gaussian beam
tracing (GBT) method utilizing graphics processing units (GPUs) to over-
come the performance limitations of traditional CPU-based acoustic simula-
tions. The algorithm was implemented and optimized on an NVIDIA RTX
A6000 GPU, significantly enhancing the Gaussian beam summation (GBS)
performance. We addressed the challenge of irregular control flows inher-
ent to GBT by leveraging CUDA’s dynamic parallelism to effectively flatten
and dispatch nested loops directly on the GPU. Additionally, a profiling-
driven optimization workflow using NVIDIA Nsight Compute enabled tar-
geted improvements, raising SM throughput from 22.27% to 33.32%, L1 cache
throughput from 13.15% to 22.15%, and L2 cache throughput from 9.16% to
21.26%. Consequently, the GPU-accelerated GBS algorithm achieved up to
an 817× speedup compared to the original single-threaded CPU implemen-
tation, while the full computational pipeline reached 112× acceleration in
a city-environment scenario involving 16,384 rays. Furthermore, this study
introduces innovative strategies for overcoming GPU memory limitations,
enabling efficient processing of large-scale ray datasets beyond single-kernel
constraints. Finally, we establish systematic performance evaluation method-
ologies critical for analyzing and tuning GPU-accelerated algorithms, laying
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a foundation for future enhancements and scalability improvements.
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1. Introduction

The study of sound propagation is crucial for a wide range of applica-
tions, including the design of concert halls [1, 2], the enhancement of virtual
reality experiences [3], improvements in audio prediction for gaming [4, 5],
and the assessment of environmental noise from drones and unmanned aerial
vehicles [6, 7, 8]. One of the key challenges in acoustic simulation is modeling
the interaction of sound waves with complex environments, which involves
reflections, diffractions, and scattering.

Over the past few decades, various simulation approaches have been de-
veloped to address these challenges, which can be broadly classified into wave-
based and geometrical acoustics methods [9, 10, 11]. Wave-based methods,
directly solve the wave equation to capture phenomena like interference and
diffraction, while the traditional numerical method such as finite element
method [9] and finite difference method [12] are adopted. Despite these
methods provide good accuracy, their substantial computational demands
make them inappropriate for large-scale applications with complex geome-
tries. Conversely, geometrical acoustics simplifies sound as rays or beams and
models reflections in a computationally efficient manner, making it particu-
larly suitable for large environments [13]. In this regard, the image source
method and ray tracing (RT) method are widely used in various acoustic
applications. The image source method [14] models each reflection from a
surface as if it originates from an image source symmetrically positioned on
the opposite side of that surface. This method is highly effective for simpler
environment such as predicting room impulse responses, analyzing reverber-
ation, and optimizing sound design in spaces like auditoriums and studios.
However, as the order of reflections increases, particularly in environments
with dense occlusions, the number of image sources grows exponentially,
leading to a significant increase in computational complexity [13].

On the other hand, the RT method models sound as a collection of rays
that emanate from a source [15]. These rays travel through the environment
and interact with surfaces encountered. Various versions of the ray tracing al-
gorithm have been implemented ever since the pioneering work of Krokstadt
et al. [16]. However, the standard ray tracing method suffers from limita-
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tions such as perfect shadows and the inability to accurately model caus-
tics. [17]. To address these limitations, the Gaussian beam tracing (GBT)
method was introduced as an extension to traditional ray tracing method [17].
This approach associates each ray with a beam that has a Gaussian intensity
distribution then constructs the sound at any given point by summing the
contributions of each beam [18]. Unlike traditional rays, Gaussian beams
inherently distribute sound energy over a continuous area, filling in gaps
where traditional rays might fail. The improvements are twofold: Physically,
Gaussian beams allow for smooth transitions in sound intensity across space,
preventing infinite energy accumulation in caustic regions and reducing un-
wanted spikes or dips in sound pressure [17]; Numerically, Gaussian beams
enhance sound field coverage while requiring fewer computational resources.
This proves particularly advantageous in complex environments with numer-
ous reflections and refractions [6], as it reduces artifacts that would otherwise
demand significant post-processing.

Nevertheless, GBT method still faces challenges, particularly in large en-
vironments with complex geometries, where the number of beams and in-
teractions increases significantly, leading to higher computational demands.
To address these limitations, parallel computation can be employed. It dis-
tributes computational tasks across multiple processing units, thereby re-
ducing the time required to trace beams, compute interactions, and recon-
struct the sound field. Among parallel architectures, graphics processing
units (GPUs) have proven particularly effective due to their ability to han-
dle many tasks simultaneously. GPUs are equipped with thousands of cores
that can process numerous parallel tasks concurrently, making them well-
suited for data-intensive applications and independent tasks [19]. This ar-
chitecture provides significant speedups for highly parallel tasks [20], such
as those encountered in geometric acoustics. Spjut et al. investigated a
multi-threaded beam tracing algorithm on multicore platforms, achieving
significant speedups with an increased number of threads [21]. Cowan and
Kapralos discussed GPU ray tracing techniques and demonstrated perfor-
mance improvements for real-time acoustic prediction [22]. Gkanos et al.
implemented the image source method on multiple GPUs and suggested that
incorporating beam tracing could further enhance efficiency [23]. Tan et al.
proposed a GPU-based tree-accelerated beam-tracing method, achieving a
speedup of 66 times compared to conventional techniques [24]. Additionally,
Greef et al. employed a ray tracing algorithm for radiotherapy dose calcula-
tions on a GPU, achieving a 6 times speedup for the evaluated cases [25].
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While significant advancements have been made in accelerating RTmethod,
which is only a part of GBT, the reconstruction of the sound pressure field
remains underexplored. This crucial process involves searching for all beams
contributing to the sound pressure at a specific space point. Existing ap-
proaches do not fully leverage parallel computation capabilities, leading to
inefficiencies. This study proposes the use of dynamic parallelism on GPUs,
which allows for on-the-fly parallel task generation [26]. By enabling kernels
to launch other kernels, this method allows threads to manage their paral-
lelism dynamically without the need for explicit synchronization through the
host. This approach not only reduces the overhead of kernel launches but
also improves overall resource utilization, which is particularly beneficial for
collecting contributions from all Gaussian beams where the computational
load varies from point to point [27, 28]. All executable files, detailed doc-
umentation, and datasets are available in the following GitHub repository:
https://github.com/dcszhang/accelerate_eitray.

The remainder of this paper is structured as follows. Section 2 reviews
the Gaussian beam tracing method. Section 3 details the proposed numer-
ical algorithm and its CUDA-based implementation, including the CUDA
architecture, flat and dynamic parallelism strategies, and considerations on
computational precision. Section 4 presents the results and discussion, cov-
ering verification against analytical solutions, applications to environmental
noise scenarios, GPU acceleration experiments with both flat and dynamic
parallelism, GPU resource utilization analysis, and profiling-driven optimiza-
tions. Finally, Section 5 concludes the paper and outlines directions for future
work.

2. Gaussian beam tracing

Figure 1 illustrates the Gaussian beam model, where the ray represents
the path of sound propagation and is typically computed using a ray tracing
algorithm. The Gaussian-shaped energy distribution around the ray is given
by the following expression:
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Figure 1: Schematic of a Gaussian beam and the associated coordinates.

where ϕ is a real constant, and (s, q1, q2) represent the ray-centered coordi-
nates. Here, det[·] represents the determinant operator, and P and Q are
matrices that satisfy the following relations:

∂Q

∂s
= cP,

∂P

∂s
= 0, (2)

where c is the sound speed. The method for calculating ray paths has been
extensively studied and will therefore not be repeated here. Interested read-
ers are encouraged to refer to the relevant literature for more detailed im-
plementations [29]. Subsequently, the contributions of all nearby Gaussian
beams along each ray are gathered to estimate the sound pressure p at any
observation point R

p(R,ω) =

∫ ∫
Φ(γ1, γ2)P (Rγ, ω) exp[iωT (R,Rγ)]dγ1dγ2, (3)

where Φ(γ1, γ2) is the weighting function, P (Rγ, ω) represents the complex
amplitude along the ray Rγ, and T (R,Rγ) is the propagation time from the
point Rγ to R. In this formula, another important coordinates called ray
coordinates (s, γ1, γ2) is presented, which are connected to the whole ray
field, and γ1 and γ2 are the parameters of the ray at the source. For more
details on the GBT method, please refer to the literature [6]. It is worth
noting that numerically evaluating the above integration is time-consuming,
but this process can be significantly accelerated using GPU calculations.
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Figure 2: The programming flowcharts of the RT and GBS processes. The proposed
dynamic parallelism targets to accelerate looping all rays in each process.

3. Algorithm and implementation

3.1. Overview

This section presents the numerical algorithm for Gaussian beam trac-
ing and its parallel implementation. The overall workflow consists of two
primary processes: ray tracing (RT) and Gaussian beam summation (GBS),
as illustrated in Figure 2. In the RT process, sound propagation paths are
determined by tracing rays and modeling their interactions with obstacles.
The complexity of this stage is driven by the number of rays and boundary
elements, where the latter are typically triangular facets representing reflec-
tive surfaces. Subsequently, the GBS process aggregates contributions from
all Gaussian beams to calculate sound pressure at observation points. The
corresponding computational demand is primarily influenced by the number
of rays and observation points.
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Figure 3: (a) Typical CPU architecture; (b) Typical GPU architecture; Green indicates
the processor while blue represents the memory; (c) Flowchart of the GPU acceleration
implementation.

3.2. CUDA architecture

We now turn to the numerical implementations utilizing the compute
unified device architecture (CUDA), a parallel computing platform and ap-
plication programming interface developed by NVIDIA®. The CUDA pro-
gramming model enables us to leverage computational resources from both
CPU and GPU platforms. Figure 3(a) illustrates the memory hierarchy in
CPUs, consisting of three levels of cache memory: L1, L2, and L3. Here, L1
performs the smallest and fastest, directly integrated into each core; L2 de-
notes larger and slower, dedicated to each core or shared among a few cores;
and L3 represents the largest and slowest, shared across all cores, acting as
a buffer between the cores and the main memory (random access memory,
RAM). In contrast, the GPU functions as a computation grid, consisting
of hundreds of blocks, each containing thousands of processors, as shown in
Figure 3(b). Threads within these blocks run concurrently, processing data
in parallel using shared L1 cache memory. Each block can execute cooper-
atively via barrier synchronization. However, blocks typically do not share
data directly with one another, except through global memory (L2) or other
memory structures.

The proposed GBT implementation consists of both sequential and par-
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Figure 4: The multi-threaded programming model of flat parallelism on GPU. These
threads run simultaneously.

allel components. As shown in Figure 3(c), tasks with low degrees of par-
allelism, such as file input or output operations, are assigned to the CPU
to leverage its strengths and efficiency in sequential processing. Conversely,
tasks like the RT and GBT processes, which involve high degrees of paral-
lelism and heavy computational loads, are offloaded to the GPU which excels
at handling numerous parallel operations simultaneously. Once these com-
putations are completed, the results are transferred back to the CPU, where
the remaining output and prediction processes continue in the same manner
as the traditional CPU algorithm. This division of workflow ensures optimal
utilization of each processor based on the nature of the tasks.

3.3. Flat parallelism

Figure 4 illustrates the flowchart of flat parallelism, detailing the entire
algorithmic process of executing the RT and GBS steps. The algorithm han-
dles an array of rays, with the initial direction of each ray defined by specified
combinations of elevation and azimuth angles. Each ray’s computation, en-
compassing both RT and GBS processes, is assigned to a dedicated thread.
By evenly distributing these tasks across processors, flat parallelism exploits
the computational capabilities of GPUs. After all rays are looped, the GPU
computation finished and the whole workflow enters CPU phase.
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Figure 5: The multi-threaded programming model of dynamic parallelism on GPU.

3.4. Dynamic parallelism

In GBT process, each beam appears to be independent, making it well-
suited for flat parallelism. However, the computational load varies across
different observers and beams. This variation arises from the need to loop
through all beams that contribute to the sound pressure in the GBS process,
as described by Equation (3). The length of each beam can vary signifi-
cantly, especially in complex environments where sound propagation is more
intricate. Using flat parallelism resulted in uneven execution times: lightly
loaded threads completed quickly, leaving heavy tasks to dominate the overall
runtime.

To address these inefficiencies, the present study adopts dynamic par-
allelism, a programming model introduced by NVIDIA [26], which allows
kernels to launch additional kernels during execution, as illustrated in Fig-
ure 5. This hierarchical execution model enables fine-grained control over
task allocation and workload balancing. Specifically, when a thread encoun-
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Figure 6: Comparison between flat and dynamic parallelisms.

ters a computationally intensive task, it can dynamically spawn child kernels
to divide the workload further. These child kernels are executed indepen-
dently, allowing idle GPU cores to be reallocated in real time to assist with
heavy tasks. This mechanism ensures that computational resources are uti-
lized efficiently, reducing idle time and mitigating bottlenecks.

Figure 6 compares flat and dynamic parallelism. In flat parallelism, tasks
are statically distributed across GPU threads during kernel launches. This
approach often leads to inefficiencies, as lightly loaded threads finish early
and remain idle, while heavily loaded threads create bottlenecks. In contrast,
dynamic parallelism redistributes the workload dynamically, enabling idle
cores to assist heavily loaded threads. This adaptive rebalancing accelerates
task execution significantly reduces overall computation time. The transition
from flat to dynamic parallelism is particularly advantageous in environments
with highly non-uniform task distributions, ensuring better load balancing
and more efficient resource utilization.

4. Results and discussion

In this study, GBT algorithm relies on high computational precision due
to the extensive use of complex numbers in the calculations. To ensure the
accuracy and numerical stability of the results, we employed double preci-
sion (FP64) throughout the algorithm. This choice aligns with the specific
needs of large-scale acoustic simulations, where small numerical errors can
accumulate and significantly impact the accuracy of the final results.
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Figure 7: Comparison of SPL calculated by (a) GBT method and (b) analytical solution
at f = 50Hz.

4.1. Verification

Here, the sound pressure level (SPL) is defined as:

SPL = 20 log10
( p

pref

)
dB, (4)

where p is the magnitude acoustic pressure and pref = 20 µPa is the reference
sound pressure.

To verify the correctness of the method described in this paper, the reflec-
tion of a monopole sound source above an infinitely long plate was computed.
The results obtained by the GBT method are compared with the analytical
solution. The sound source is positioned at z = 5 with a frequency of 500Hz.

Figure 7 compares the sound field of a monopole sound source positioned
above a rigid ground at z = 5m with a frequency of 50Hz. The results demon-
strate that the GBT solver reliably reproduces the sound field structure, as
validated against the analytical solution. Figure 8 also illustrates the case for
a sound source frequency of 500Hz, where the GBT solver’s results continue
to closely match the analytical solution. The comparison further confirms the
solver’s accuracy across different frequencies. Figure 9 compares the sound
pressure level distribution at z = 10, showing an excellent match between the
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Figure 8: Comparison of SPL calculated by (a) GBT method and (b) analytical solution
at f = 500Hz.

Figure 9: Comparison of SPL at z = 10 for various frequencies: (a) 50Hz and (b) 500Hz.
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Figure 10: Single-threaded sound field prediction algorithm framework.

two results.At f = 50Hz, the GBT results deviate by up to 1.8dB, whereas
at f = 500Hz the maximum error falls to about 0.5dB. These observations
confirm that the GBT method is better suited to higherfrequency problems.

This validation case demonstrates the accuracy of the proposed method
and its implementation even for high-frequency sound reflection problems.Based
on the high accuracy and stability demonstrated in the foregoing validation,
this section extends the method to more realistic environmental noise sce-
narios in order to evaluate its performance in a single-threaded pipeline and
to visualize the resulting sound fields.

4.2. Application to environmental noise

In our single-threaded GBT pipeline (shown in Figure 10), we first convert
the noise source parameters, geometric environment model, and observer po-
sition into an acceleration-friendly data structure by building a Quadtree [30]
over the 3D model and extracting a triangular mesh optimized for fast inter-
section tests. The RT module then generates Gaussian beams from the source
and performs Quadtree-accelerated collision detection against the mesh to
compute each beam’s precise propagation path and intersection parameters.
Finally, the GBS module aggregates the pressure contributions of all beams
whose trajectories fall within a prescribed influence radius around each ob-
servation point, applies beam weighting functions, sums the individual con-
tributions to obtain the total sound pressure, and color-maps the resulting
SPL values to produce the final sound field visualization.
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Figure 11: Acceleration factors of the GBS and RT stages under flat parallelism as a
function of ray count.

4.3. GPU acceleration with flat parallelism

In this preliminary phase, we port the single-threaded GBT pipeline to
the GPU using a flat parallelism approach, where each ray is processed by
an individual CUDA thread. Figure 11 plots the speedup of the GBS and
RT stages against the number of rays, ranging from 1 to 16384. The GBS
speedup increases steadily from 0.013× to 3.47×, while the RT speedup grows
from 0.04× to 4.90×. Figure 12 shows that, at 16384 rays, the GBS module
still dominates over 95% of the total execution time in the CPU baseline,
causing the overall speedup to closely follow the GBS curve and reach a
maximum of 3.47×. At low ray counts, the GPU acceleration factor is below
1 due to GPU underutilization and kernel launch overheads. In practice,
GPUs become advantageous only when the computational workload exceeds
a certain threshold. To further identify performance bottlenecks under flat
parallelism, we collected hardware metrics using NVIDIA Nsight Compute.
Table 1 summarizes the key throughput metrics measured with 16384 rays.

These metrics reveal that, although the GBS stage achieves up to 3.47×
speedup, SM utilization remains very low (3.23%) and global memory band-
width is barely utilized (1.68%). The high L1/TEX cache throughput (24.64%)
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Figure 12: Runtime breakdown between RT and GBS stages under flat parallelism at
16384 rays.

suggests that data locality is sufficient, but the low DRAM throughput indi-
cates a severe underutilization of off-chip memory bandwidth. Together with
the dominant GBS workload, these findings point to kernel launch overhead
and workload imbalance as the main bottlenecks in the flat parallel approach.

4.4. GPU acceleration with dynamic parallelization

To address the workload imbalance observed under flat parallelism, we
implemented CUDA dynamic parallelism, allowing threads in the GBS stage
to spawn child kernels for processing variable workloads. It is worth noting
that CUDA dynamic parallelism was first introduced in NVIDIA’s Kepler
architecture (2012) and is generally applicable to all NVIDIA GPU archi-
tectures released since then, rather than being specific to the NVIDIA RTX
A6000 GPU used in this study.

Hardware and Software Configuration. All experiments were carried out on a
workstation equipped with an NVIDIA RTX A6000 GPU and CUDA Toolkit
12.3. The CPU baseline is measured on an AMD 9754 @ 2.25 GHz using
single-threaded execution.
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Table 1: Nsight Compute metrics under flat parallelism (16384 rays).

Metric Throughput [%]
Compute (SM) Throughput 3.23
Memory Throughput 1.68
L1/TEX Cache Throughput 24.64
L2 Cache Throughput 1.68
DRAM Throughput 0.50

Simulation Scenarios. We consider two representative acoustic environments:

• Free Field: an open-space scenario without reflections.

• City Environment: a complex urban scenario including buildings,
terrain, and roads.

Both scenarios used identical simulation parameters, summarized in Table 2,
to ensure a fair comparison.

Table 2: Simulation parameters for Free Field and City Environment scenarios

Parameter Free Field City Environment
Air temperature, Ta (°C) 20 20
Relative humidity, Hr (%) 70 70
Atmospheric pressure, Pa (atm) 1 1
Number of source frequencies, fs 5 1
Dimensionality, D 3D 3D
Elevation angle range, [Θmin,Θmax] (°) [0,180] [0,180]
Azimuth angle range, [Φmin,Φmax] (°) [0,360] [0,360]
Time steps, Nsteps 8000 5000
Reflection limit, Rmax 10 20
Time step size, ∆t (s) 1e–4 1e–4
Observation points, No 13586 10201

Chunking for Memory Constraints. The RTX A6000 can process at most
11364 rays per kernel launch due to GPU memory limits. For larger ray
counts (e.g., 16384), we partition the workload into chunks of 11364 and
5020 rays. This chunking incurs under 2% overhead for kernel relaunch and
buffer management, without affecting the overall acceleration trends.
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Evaluation Protocol. We compare GPU execution against the single-threaded
CPU baseline, measuring:

1. Speedup factors for the GBS and RT stages.

2. Runtime breakdown between GBS and RT.

3. Hardware utilization metrics collected via NVIDIA Nsight Compute.

The following section presents the measured acceleration performance and
runtime analyses for both scenarios.

4.4.1. Numerical analysis of City Enviroment case

Our GPU multi-threaded algorithm demonstrated significant acceleration
compared to the traditional CPU single-threaded algorithm in the “City En-
viroment” experiment. This is particularly evident when the number of rays
is increased to 16384, with the acceleration of the GBT reaching an impres-
sive 798 times and the overall acceleration reaching approximately 88 times.
These remarkable results are clearly illustrated in Figure 13. The increased
thread-parallel computing power provided by GPU dynamic parallelism is
the main reason for the significant performance improvement. Furthermore,
the timeshare analysis of the GBS and RT components clearly identifies a
performance bottleneck in the sound field prediction algorithm. In multi-
threaded GPU execution, the time taken by the GBS component is signifi-
cantly reduced to the extent that RT occupies more than 90% of the time,
as shown in Figure 14. This highlights the significant advantage of GPU dy-
namic parallelism in processing complex acoustic computations. The overall
acceleration ratio is notably smaller than the acceleration ratio of the GBS
component, due to the lower acceleration efficiency in the RT module.The
limitation of parallel acceleration potential arises primarily from the inherent
serial dependencies within the RT computations, which result in less effec-
tive GPU parallelization compared to the highly parallelizable GBS stage.
Although the RT component also executes on the GPU, certain computa-
tional steps within RT remain inherently sequential, limiting the achievable
acceleration. Nevertheless, the GPU multi-threaded sound field prediction
algorithm demonstrates significant acceleration, up to a hundred times in
complex enviroments.

The RTX A6000 can process at most 11364 rays per kernel launch due
to GPU memory limits. For experiments with 16384 rays, we partition the
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Figure 13: Performance of multi-threaded GPU sound field prediction in City Environment
using dynamic parallelism: Acceleration factors for different ray counts.

Figure 14: Percentage of two main processes in a multi-threaded sound field prediction
algorithm in City Environment using dynamic parallelism GPUs.
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Figure 15: Performance of multi-threaded GPU sound field prediction in Free Field using
dynamic parallelism: Acceleration factors for different ray counts.

workload into two chunks (11364 and 5020 rays). This chunking incurs un-
der 2% overhead for kernel relaunch and buffer management, yet the GBS
speedup of 798× closely matches the 790× speedup observed with 10800
rays. This demonstrates that chunking does not degrade performance and
highlights the algorithm’s stability and scalability.

Overall, these results confirm that dynamic parallelism effectively bal-
ances workloads across GPU cores, shifting the remaining bottleneck to the
RT stage and paving the way for further optimizations in ray tracing.

4.4.2. Numerical analysis of Free Field Enviroment

The ”Free Field” scenario exhibit particularly noteworthy performance
when the number of rays increased to 16,384. Although the acceleration
factor for GBS only reached 200 times, the overall acceleration factor sig-
nificantly rose to 188 times, as illustrated in Figure 15. A shift in the time
proportion between the RT module and the GBS module occurred, as shown
in Figure 16, where the roles reversed in terms of their contribution to the
total computation time.

The unusual bar chart highlights the performance dynamics of the sound
field prediction algorithm across different enviroment. Initially, the RT phase
occupies a higher proportion of the computational load, while the GBS phase
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Figure 16: Percentage of two main processes in a multi-threaded sound field prediction
algorithm in Free Field using dynamic parallelism GPUs.

remains relatively low. This shift occurs because, in an obstacle-free envi-
ronment, the RT computation remains relatively lightweight regardless of
ray count, whereas the number of Gaussian beams to sum in the GBS stage
grows linearly with the ray count. Consequently, GBS becomes the primary
workload at high ray counts. These results confirm that dynamic parallelism
effectively adapts to changing workloads.

4.4.3. GPU resource usage

The analysis of GPU resource utilization is conducted using Nsight com-
pute during the city environment experiment. The results are presented in
Tables 3, 4, and 5.

Table 3: Optimized Nsight compute software performance analysis table

Metric Throughput [%]
Compute (SM) Throughput 22.27
Memory Throughput 9.16
L1/TEX Cache Throughput 13.15
L2 Cache Throughput 9.16
DRAM Throughput 2.04

A significant change observed in Table 3 is the substantial increase in the
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utilization of Streaming Multiprocessors (SM) resources from a mere 3.23%
to 22.27% by implementing dynamic parallel processing for the GBS section.
This significant improvement indicates that the dynamic parallelism strategy
plays a key role in enhancing the efficiency of GPU computational resource
utilization.

Table 4: Performance analysis of the Nsight compute software for RT process graph

Metric Throughput [%]
Compute (SM) Throughput 1.67
Memory Throughput 3.05
L1/TEX Cache Throughput 4.38
L2 Cache Throughput 3.05
DRAM Throughput 0.32

As seen in Table 4, the complexity of the computation leads to a higher
demand for registers per GPU thread, with an average of 199 registers needed.
This high register demand poses a limitation on the granularity of dynamic
parallelism. Registers are a highly valuable resource in GPUs, and the exces-
sive consumption of registers by each thread means that fewer threads can
be executed simultaneously. Therefore, our dynamic parallelism optimization
strategy is approaching its performance limit under the current conditions.

Table 5 shows that the GPU utilization rate for executing the RT mod-
ule alone is only 1.67%, a low utilization rate that significantly reduces the
overall GPU performance. This indicates significant room for performance
improvement during the RT process. Thus, a focus of future work could be
to further optimize the RT algorithm to improve its resource utilization effi-
ciency on the GPU, thereby achieving a higher acceleration ratio and better
performance for the overall sound field prediction algorithm.

Table 5: Analysis of the resources used by the optimised

Launch Statistics Value
Grid Size 6
Registers Per Thread 199
Block Size 256
Thread 1536
Waves Per SM 0.13
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4.5. Profiling-Driven Optimization

To close the remaining performance gap under dynamic parallelism, we
conducted a two-stage profiling campaign using NVIDIA Nsight Compute:

1. Baseline measurement: Collect hardware counters (SM throughput,
register usage, cache and memory throughput) for the unoptimized
kernels.

2. Bottleneck analysis: Identify hotspots and inefficiencies in compute,
memory, and register utilization.

Targeted Optimizations. Based on the profiling insights, we apply the follow-
ing refinements:

• Reduce register pressure:

– Applied launch bounds (256,2) and split long kernels to cap
register usage per thread.

– Refactored three large data structures into on-demand local vari-
ables, lowering registers per thread from 199 to 128.

• Improve instruction throughput:

– Replaced divergent warp reductions with shfl sync to eliminate
branch divergence.

– Switched global loads to ldg for read-only data, boosting mem-
ory read efficiency.

• Optimize texture cache:

– Bound static terrain meshes to cudaTextureObject t, enhancing
data locality and reducing memory access latency in the RT stage.

These changes raised block occupancy from 22.27% to 34.18% and signif-
icantly improved SM and cache utilization.

Quantitative Outcomes. Table 6 compares key microarchitectural metrics be-
fore and after optimization, and Table 7 reports application-level speed-ups
in the environmental noise case.

These results confirm that a profiling-driven approach—targeting register
pressure, instruction throughput, and cache utilization—is essential for fully
exploiting modern GPUs in large-scale acoustic simulations.

22



Table 6: Nsight Compute metrics before and after profiling-guided refinement
Metric Baseline Optimized ∆
Registers per thread 199 128 –36%
Compute (SM) Throughput 22.27% 33.32% +11.05%
L1/TEX Cache Throughput 13.15% 22.15% +9.00%
L2 Cache Throughput 9.16% 21.26% +12.10%

Table 7: Application-level speed-ups (City Environment, 16384 rays)

Stage Baseline Optimized
GBS only 7.98× 102 8.17× 102

Full pipeline 88× 112×

5. Conclusion

In this work, we have presented a GPU-accelerated implementation of the
Gaussian Beam Tracing (GBT) method using CUDA, combining both flat
and dynamic parallelism to tackle the computational demands of large-scale
acoustic simulations. Our key findings and contributions are:

• High-performance GPU implementation: We port the GBT al-
gorithm to CUDA, achieving up to 817× speedup in the Gaussian
Beam Summation (GBS) stage and 112× overall pipeline acceleration
in complex city environments.

• Dynamic parallelism for workload balancing: By enabling kernels
to spawn child kernels at runtime, we effectively addressed the irregular
and highly non-uniform workloads of GBS, reducing idle GPU resources
and overcoming the limitations of flat parallelism.

• Memory-aware chunking mechanism: To accommodate GPUmem-
ory constraints, we designed a lightweight chunking strategy that par-
titions large ray sets into manageable batches, incurring less than 2%
overhead while preserving high speedups.

• Comprehensive validation and evaluation: We verify algorithmic
accuracy against analytical solutions and conducted extensive experi-
ments in both free-field and urban scenarios, demonstrating robustness
and scalability across diverse acoustic environments.
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These results underscore the feasibility of real-time or near–real-time
sound field prediction for applications in architectural acoustics, environ-
mental noise assessment, and virtual reality. In future work, we will fo-
cus on further optimizing the ray tracing stage—reducing register pressure,
enhancing memory bandwidth utilization, and exploring hybrid parallelism
strategies—to push performance even higher and broaden the applicability
of GPU-based acoustic simulation techniques.

Additionally, given that the primary synchronization requirement is sum-
ming contributions from different beams, extending our GPU-accelerated
implementation to multiple GPUs represents a promising avenue for further
scalability and performance improvements. Investigating the performance
and scalability of multi-GPU deployments will thus form an integral part of
our future research.
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