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摘 要
随着区块链技术的出现，智能合约在金融领域得到了广泛应用。这项革命性

技术通过密码学算法构建的去中心化信任机制，有效解决了传统金融交易中存在
的中介依赖性强、流程透明度不足、合约执行效率低下等痛点问题。然而，现有的
欺诈检测方法在捕捉交易网络中的全局结构模式以及交易数据中蕴含的局部语义
关系方面存在局限性。大多数现有模型仅单独关注结构信息或语义特征，导致在
检测复杂欺诈模式时效果不尽如人意。为此，本文提出了一种动态特征融合模型，
该模型结合了基于图的表示学习和语义特征提取方法来进行区块链欺诈检测。具
体来说，我们构建了全局图表示以对账户关系进行建模，并从交易数据中提取局
部上下文特征。同时，我们引入了一种动态多模态融合机制，用以自适应地整合这
些特征，从而使模型能够有效捕捉结构性和语义性的欺诈模式。
此外，我们还开发了一套完整的数据处理流程，包括图构建、时间特征增强和

文本预处理。基于大规模真实区块链数据集的实验结果显示，在准确率、F1分数
和召回率等指标上，我们的方法均超过了现有的基准方法。该研究的核心价值在
于揭示了结构关系与语义相似性协同分析的必要性。通过融合账户网络拓扑特征
与交易文本语义特征，模型能够突破单一特征分析的局限性。这种融合思路为区
块链安全领域提供了新的技术路径，特别是在应对智能合约漏洞利用、钓鱼攻击
等新型欺诈手段时展现出扩展性潜力。实验数据表明，同时考虑结构与语义特征
的检测框架能够显著提升复杂场景下的欺诈识别效果。

关键词：区块链；欺诈检测；多模态融合；安全
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ABSTRACT
With the emergence of blockchain technology, smart contracts have been widely applied
in the financial sector. This revolutionary technology, through decentralized trust mech-
anisms built by cryptographic algorithms, effectively addresses pain points in traditional
financial transactions such as high dependency on intermediaries, insufficient process
transparency, and low contract execution efficiency. However, existing fraud detection
methods exhibit limitations in capturing global structural patterns within transaction net-
works and local semantic relationships embedded in transaction data. Most current mod-
els focus solely on structural information or semantic features independently, resulting in
suboptimal performance when detecting complex fraudulent patterns. To address this, this
paper proposes a dynamic feature fusion model that combines graph-based representation
learning with semantic feature extraction for blockchain fraud detection. Specifically, we
construct global graph representations to model account relationships and extract local
contextual features from transaction data. Additionally, we introduce a dynamic mul-
timodal fusion mechanism to adaptively integrate these features, enabling the model to
effectively capture structural and semantic fraudulent patterns.

Furthermore, we developed a complete data processing pipeline comprising graph con-
struction, temporal feature enhancement, and text preprocessing. Experimental results on
large-scale real blockchain datasets demonstrate that our method surpasses existing base-
line approaches in accuracy, F1 score, and recall rate. The core value of this research
lies in revealing the necessity of synergistic analysis between structural relationships and
semantic similarities. By integrating topological features of account networks with se-
mantic features of transaction texts, the model overcomes the limitations of single-feature
analysis. This fusion approach provides a novel technical pathway for blockchain secu-
rity, particularly demonstrating scalability potential in addressing emerging fraudulent
techniques such as smart contract exploits and phishing attacks. Experimental evidence
indicates that detection frameworks considering both structural and semantic features sig-
nificantly enhance fraud identification effectiveness in complex scenarios.

KEYWORDS: Blockchain; Fraud Detection; Multimodal Fusion; Security
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符号说明
A 交易账户图的邻接矩阵，A[𝑖, 𝑗] 表示账户 𝑖 到 𝑗 的交易权重，

由交易金额与时间特征加权计算
Ã 添加自环的邻接矩阵，Ã = A + I

D̃ 邻接矩阵的度矩阵，对角线元素为节点度数
𝛥𝑇𝑛 n-gram时间差，𝛥𝑇𝑛 = 𝑇𝑖 − 𝑇𝑖−(𝑛−1)，表示当前交易与前 𝑛 − 1

个交易的时间间隔
𝑤𝑘 交易权重，𝑤𝑘 = value𝑘 ⋅ ∑𝑁

𝑛=1 𝛼𝑛𝛥𝑡𝑛,𝑘，由交易金额与时间聚合
特征线性组合

𝛼𝑛 n-gram时间差权重系数，𝛼𝑛 = 1/𝑛
∑𝑁

𝑗=1(1/𝑗)
，强调短期交易爆发模

式
H(𝑙) 第 𝑙层 GCN节点特征矩阵，初始 H(0)为账户初始特征
W(𝑙) 第 𝑙层 GCN可学习权重矩阵
EBERT BERT嵌入表示，包含词向量、位置向量和段落类型向量
EFusion 动态融合嵌入，EFusion = 𝑔1EBERT + 𝑔2EGCN + 𝑔3(𝛼EBERT +

(1 − 𝛼)EGCN)

𝑔𝑖 动态融合门控权重，通过 Gumbel-Softmax计算，𝜏 控制权重
分布的尖锐程度

Wfusion 分类器权重矩阵，y = Softmax(WfusionHfusion + bfusion)
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第一章 引 言

第一章 引言
1.1 研究背景及意义

(1) 研究背景
区块链技术近年来在全球范围内迅速发展，成为多个行业变革的驱动力。作

为一种去中心化的分布式账本技术，区块链能够在没有中央管理机构的情况下确
保数据的安全性和透明性。特别是在金融行业，区块链的引入使得支付、交易、证
券、供应链金融等多个领域发生了深远变化 [1]。在传统的支付系统中，跨境支付通
常需要通过多个中介，这不仅增加了成本，也降低了交易的速度。而通过区块链，
支付可以直接在参与者之间完成，无需中介，从而大幅度提升了交易的速度和透
明度。
然而，随着区块链技术的普及，相关的安全问题和欺诈行为也随之增多。由于

区块链本身具有匿名性和去中心化特点，恶意用户能够通过伪造身份、篡改交易
记录等手段进行欺诈 [2]。尤其在加密货币交易中，黑客通过利用智能合约的漏洞
进行攻击，造成了大量的财务损失 [3]。此外，随着区块链技术在供应链管理、物联
网等领域的应用增加，相关的欺诈行为呈现多样化趋势，给社会和经济带来了严
峻挑战 [2]。

尽管区块链技术具有明显的优势，但也面临着包括隐私泄露、法律监管滞后
等一系列挑战。由于区块链的交易信息公开透明，任何人都可以查看交易的全过
程，这虽然为提高透明度提供了保障，但同时也暴露了用户的隐私和敏感信息 [4]。
此外，区块链技术虽然提高了交易的安全性，但其在监管方面的挑战仍然突出。许
多国家和地区的法律体系尚未完全适应区块链带来的新问题，导致相关的监管法
规滞后，增加了非法活动的风险 [3]。
在供应链管理中，区块链的应用虽然提升了透明度和可追溯性，但由于供应

链的复杂性和跨行业的参与方，仍然面临较大的欺诈风险。例如，某些不法分子利
用供应链中的信息不对称，通过虚假数据篡改来掩盖其不正当行为 [5]。这些问题
引发了对区块链技术安全性的广泛关注，并迫使学者和行业专家加强对区块链安
全性的研究。
此外，区块链技术在金融领域的应用尤其复杂，因为金融交易通常伴随着极

高的风险。在面对跨境支付、证券交易、数字货币等高风险操作时，区块链技术的
安全性和防护能力显得尤为重要。尽管区块链的去中心化特点有助于降低传统金
融系统中的单点故障风险，但它也可能成为攻击者的新目标，例如通过 51%攻击、
智能合约漏洞等方式进行恶意篡改 [3]。
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(2) 研究意义
为了应对这些问题，学者们提出了多种区块链安全防护方案，其中包括基于

人工智能的欺诈检测技术 [6]。近年来，人工智能和机器学习在区块链安全中的应
用取得了显著进展，尤其是在欺诈行为的识别与预测方面，成为了研究的重点 [2]。
在以太坊中的钓鱼检测长期以来一直依赖图神经网络（GNNs）[7] 来对交易图中的
资金流进行建模。图神经网络作为处理图结构数据的有效工具，能够在区块链网
络中通过分析账户之间的资金流动关系，挖掘出潜在的欺诈行为。具体来说，GNN
通过对区块链交易数据中的图结构进行学习，可以发现资金流动中的异常模式，从
而识别潜在的钓鱼行为 [8]。这种方法的核心优势在于其能够自动捕捉和学习图中
的节点之间的依赖关系，且无需人工设计特征，使得图神经网络在金融欺诈检测
中获得了广泛应用。
然而，尽管图神经网络（GNN）在捕捉全局交易结构方面具有显著优势，当

前的图神经网络方法依然面临一些挑战。最显著的问题之一是交易关系的二值性
和邻居采样策略的局限性。在传统的 GNN模型中，交易关系通常被视为存在或缺
失，而这种二值化处理方式很难捕捉到账户行为的细微差异，尤其是在高频交易
和周期性转账等情形下。例如，在许多钓鱼攻击中，恶意账户会通过频繁的小额交
易来掩盖其真实意图，这种行为模式在普通 GNN模型中容易被忽视 [9]。
此外，图神经网络的邻居采样策略通常是基于节点的邻接信息进行采样，而

对于大规模的区块链网络而言，节点的邻接信息可能会被稀疏化，导致邻居采样
的效果不尽如人意。这种情况下，GNN无法有效捕捉到账户之间的复杂交互关系，
尤其是在存在多个相似节点或者多个交易对手的情况下，如何准确地识别出恶意
账户，成为了一个亟待解决的难题 [10]。
为了克服这些问题，近年来一些方法开始引入序列建模技术，如 Transformer

和 LSTM等，来对账户的交易序列进行上下文建模，从而捕捉交易行为中的时序
模式 [11]. 通过对账户的交易行为进行序列化处理，序列模型能够从完整的交易记
录中捕捉到更为细致的上下文信息，例如周期性转账、固定对手方偏好以及特定
时间窗口内的交易激增。这些信息通常能揭示出钓鱼账户在短时间内的异常行为
模式，如频繁的资金转移、金额相似的交易等，正是这些行为的异常性让传统的基
于图结构的模型难以捕捉 [12]。
然而，序列模型在解决上述问题时也带来了一些新的挑战。最主要的一个问

题是，序列模型无法直接利用区块链交易图中的拓扑结构信息。虽然序列模型可
以有效捕捉到账户的行为序列，但对于账户间的全局结构关系和交易模式，序列
模型无法进行充分的建模。这导致了一个显著的局限性：尽管可以识别出局部的
交易模式，但对于跨账户之间的关联关系和复杂的行为网络，序列模型往往表现
得较为薄弱。因此，目前的研究工作往往试图将图神经网络和序列模型结合，以期
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实现更为全面的欺诈检测。
局部语义相似性信息是当前研究中的一个重要方向。正常账户和钓鱼账户的

交易行为在局部模式上存在显著差异。正常账户通常表现为较为随机的行为，其交
易频率较低，且金额和时间间隔不规则，因此这些账户之间的语义关联性较弱 [13]。
与此相对，钓鱼账户则表现出一致性特征——短时间内频繁交易、金额相近或存在
重复行为。这些特点通常反映了钓鱼账户的自动化行为，即试图通过频繁的小额
交易或与特定账户的重复交互，掩盖其真实意图。当前的检测方法往往难以捕捉
这些局部的语义相似性，限制了其在识别复杂欺诈行为时的准确性。
例如，在一些基于图神经网络的模型中，节点之间的关系仅仅通过交易是否

发生来判定，而忽略了交易时间的间隔和金额的相似性，这使得模型难以发现那
些特定时间内的异常交易行为，尤其是在钓鱼攻击中，攻击者往往通过短时间内
的频繁交易来测试不同账户的响应 [14]。因此，局部语义信息的提取，尤其是交易
行为中时间、金额等因素的综合分析，对于提高欺诈检测模型的精度至关重要。
全体交易账户网络信息的分析则是另一个关键点。正常账户和钓鱼账户在网

络结构上存在显著差异。正常账户通常构成稀疏连接的网络，账户之间的聚类较
少，呈现出较为随机的交易模式 [15]。相比之下，钓鱼账户往往在网络中形成高密
度的子网络，这些子网络的节点之间存在紧密的联系，交易行为集中且频繁。通过
分析这种高密度子网络的形成，我们可以有效地识别出可能的钓鱼账户。具体来
说，钓鱼账户通常会在短时间内产生大量的交易，且这些交易的金额和对象高度
相似，形成异常的交易聚集。这些交易聚集的局部高连通性为钓鱼行为提供了有
力的指示 [12]。

目前，大部分的图神经网络方法已经能够一定程度地捕捉这种结构信息，但
仍然存在对于大规模网络数据的处理能力有限的问题。在面对高密度网络和多变
的交易模式时，如何更精确地提取出全局网络结构信息，并结合局部交易行为模
式进行综合分析，仍然是当前研究中的一个挑战。
1.2 国内外研究现状
1.2.1 基于图的欺诈检测

在区块链网络中，交易数据通常具有复杂的关系结构，而基于图的模型能够
有效捕捉这些复杂关系，并在欺诈检测中表现出色。区块链平台的去中心化特性
使得每一笔交易都可能涉及多个账户之间的交互，形成了一个动态且多层次的交
易网络。这些网络中的节点代表区块链上的账户，而边则表示账户之间的交易行
为。通过这种方式，区块链交易数据不仅呈现出明显的图结构特征，而且这些图结
构能够反映账户间的交易关系、行为模式及潜在的风险点。基于图的模型尤其在
图神经网络（GNNs）方面展现了巨大的潜力，能够通过学习节点和边的特征来有
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效地识别欺诈行为，如钓鱼账户和恶意行为者的活动 [16]。
图神经网络（GNNs）通过对节点及其邻居的特征进行聚合，从而为每个节点

生成高维表示。这种表示能够有效捕捉节点间的复杂关系，并有助于揭示潜在的
欺诈行为。在以太坊等区块链平台上，图神经网络（GNNs）已经被广泛应用于检
测欺诈行为。例如，Tan [17]提出了一种基于图卷积网络（GCNs）的模型，用于从
以太坊交易记录中检测欺诈。该模型通过构建交易网络和提取节点特征，将地址
分为正常和欺诈两类。具体来说，模型首先通过图结构捕捉账户间的交易关系，并
将账户特征转化为向量，进而利用图卷积网络进行特征聚合，从而在图的层级上
学习账户的潜在行为模式。在此过程中，GCN能够在多层网络中传播信息，从而
捕获到更深层次的账户行为特征，如周期性交易或异常资金流动等。通过这种方
式，模型能够准确识别那些行为模式与正常账户有显著差异的钓鱼账户。
此外，Kanezashi [18] 探讨了在以太坊交易网络中使用异构图神经网络的应用，

重点关注如何处理大规模网络以及标签不平衡问题。在以太坊网络中，由于正常
账户的数量远大于钓鱼账户，导致标签不平衡问题的严重性。为了解决这一问题，
Kanezashi提出了异构图神经网络（HGNN），该方法在构建交易图时，将不同类型
的交易行为视为不同类型的边，从而实现更加精准的特征提取。此外，异构图神经
网络通过增加额外的边类型，有效增强了模型在处理不同类型账户之间的交互时
的表达能力。通过这种方式，模型能够更加灵活地适应区块链网络的多样性，并且
能够针对不同类型的欺诈行为进行特定的学习。
在另一个研究中，Li [19]提出了一个称为 PDGNN的钓鱼检测框架。该框架基

于 Chebyshev-GCN，通过提取交易子图并训练分类模型，能够在大规模以太坊网
络中有效地区分正常账户与钓鱼账户。与传统的 GCN模型相比，Chebyshev-GCN
通过使用 Chebyshev多项式逼近卷积运算，从而在计算上提高了效率，同时保持了
较高的精度。通过这种方式，PDGNN能够在处理大规模数据时，避免了过度计算
和过拟合的问题。此外，Li提出的交易子图（Subgraph）方法，通过提取与账户行
为相关的局部子图，进一步优化了模型的学习过程，使得模型能够更好地捕捉到
钓鱼账户的特殊行为模式，如频繁的小额交易、固定对手方偏好等。

Wang [20]提出了交易子图网络（TSGN）框架，通过构建捕捉交易流关键特征
的交易子图来增强以太坊钓鱼检测。与传统的全局图神经网络不同，TSGN通过在
图中划分交易子图，对每个子图进行特征学习。这种方法能够更有效地捕捉交易
流中的局部行为特征，尤其是在面对复杂的账户行为时，可以避免全局信息的过
度干扰。通过对局部图的关注，TSGN模型能够更精准地捕捉到钓鱼账户的异常交
易模式，如频繁与特定账户交易、相似金额的重复交易等行为，从而显著提升了模
型在实际应用中的准确性。

Hou [21] 则提出了一种基于 GCN 和条件随机场（CRF）的以太坊钓鱼检测方
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法。该方法首先利用 DeepWalk为交易图中每个账户节点生成初始特征，然后采用
GCN 学习图结构表示，以捕捉账户间的交易关系。DeepWalk 是一种基于随机游
走的节点嵌入方法，通过模拟账户间的交易行为，生成每个节点的初始向量表示。
这些初始特征为后续的 GCN学习提供了丰富的信息。为了进一步提高分类性能，
CRF层被引入模型中，CRF能够通过条件依赖关系对相似节点进行聚类，从而进
一步增强了相似节点之间的联系。这种方法的创新之处在于将图神经网络与条件
随机场结合，进一步提高了钓鱼账户的识别能力，尤其是在处理节点间相似性较
高时，能够有效避免误分类。
尽管基于图神经网络的方法在欺诈检测中取得了显著进展，但仍然存在一些

挑战。首先，区块链交易图的规模非常庞大，尤其是在以太坊等公链中，节点和边
的数量极为庞大，这对图神经网络的计算能力提出了较高的要求。如何在保证模
型准确性的同时提高计算效率，仍然是当前研究中的一个重要问题。其次，交易图
中的标签不平衡问题依然存在，大量正常账户与少数钓鱼账户之间的差异性使得
模型的训练过程容易出现过拟合。因此，未来的研究需要更多地关注如何解决大
规模数据处理和标签不平衡的问题。
1.2.2 基于时间序列数据的欺诈检测

时间序列数据分析在区块链欺诈检测中扮演着重要角色，尤其是在处理交易
记录和检测异常行为方面。随着区块链技术的不断发展，平台上每天产生的交易数
量庞大，其中包含了大量有价值的时间序列信息。尤其是在像以太坊这样的大型
区块链平台上，交易时间、交易频率、交易金额及其波动等时间序列信息可用于识
别潜在的欺诈行为。时间序列数据的独特性和丰富的上下文使得其在检测异常活
动、发现可疑模式以及对抗不断演化的欺诈行为中发挥着越来越重要的作用 [22]。

(1) LSTM在时间序列数据中的应用
在区块链欺诈检测领域，长短时记忆网络（LSTM）作为一种强大的序列建模

工具，已经被广泛应用于时间序列数据的异常检测。LSTM能够有效地捕捉时间序
列中的长短期依赖关系，对于处理区块链交易数据中如交易频率、时间间隔及金
额波动等信息，展现出了显著的优势。Hu [22] 提出了基于 LSTM的时间序列分析
方法，应用于以太坊智能合约中的交易欺诈检测。LSTM模型能够从历史交易序列
中捕捉到异常交易行为的时间特征，如短时间内的交易激增、频繁的重复交易等，
这些都是潜在的欺诈行为的表现。

LSTM通过记忆网络中的门控机制有效解决了传统 RNN在长时间序列中梯度
消失的问题，能够在处理复杂的交易行为时，保持对过去交易的敏感性，从而识别
出欺诈行为的潜在规律。例如，在一个多交易者参与的场景下，LSTM可以追踪账
户间的交易模式，检测出有规律的、不寻常的交易行为，尤其是在跨账户大规模转
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移资金时，LSTM可以捕捉到这类行为的时间序列异常，并通过模型的训练将其分
类为可能的欺诈行为 [23]。

(2) XGBoost与时间序列特征的结合
除了 LSTM，另一种流行的机器学习方法是 XGBoost，它在许多欺诈检测任

务中显示了极高的性能。XGBoost利用梯度提升算法（GBDT），在对数据进行分
类时能够高效地处理特征的非线性关系。Farrugia [23] 提出了结合时间序列特征与
XGBoost模型用于以太坊非法账户检测的方法。该研究通过提取关键时间序列特
征，并与 XGBoost进行结合，强调了诸如交易时间间隔、交易金额波动等特征在
检测非法账户中的重要性。
具体来说，Farrugia通过提取时间序列的统计特征（如均值、标准差、最大值

和最小值）以及交易的时间特征（如每日交易频率、交易时间间隔）来构建特征向
量，并输入到 XGBoost模型中进行训练。与 LSTM不同，XGBoost能够快速处理
大量的时间序列数据，并在短时间内完成训练，适用于大规模数据集的检测任务。
Farrugia的工作展示了如何结合机器学习算法和时间序列分析方法，提升区块链欺
诈检测的精度和效率。通过这种方式，XGBoost模型不仅能够从历史数据中学习
账户行为模式，还能够识别出那些在正常交易行为中不容易察觉的异常模式 [24]。
1.2.3 混合方法

混合方法整合了图数据、时间序列数据和语义信息等多种信息，从而实现了
更高的检测准确率和鲁棒性，能够有效识别以太坊恶意交易检测中的复杂和动态
欺诈模式 [25]。近年来，随着区块链技术的快速发展，尤其是以太坊智能合约的广
泛应用，欺诈行为在区块链平台中变得越来越复杂多样。为了有效识别这些恶意
行为，研究人员提出了多种混合方法，通过融合不同类型的数据和算法，提升了检
测的准确性与效率。混合方法的核心思想在于通过多模态数据的综合分析，最大
化地发掘其中的潜在欺诈模式，使得模型能够更好地应对多样化的欺诈行为，尤
其是在面对交易模式隐蔽、恶意行为高度动态变化的情况下，表现出更强的适应
性和准确性。
其中，基于图神经网络（GNN）的混合方法已经成为一种重要的研究方向。图

神经网络能够有效地捕捉以太坊交易数据中的复杂关系结构，利用图结构的特性
对交易模式进行建模，进而发现其中的异常行为和潜在欺诈。结合其他类型的数
据，如时间序列数据和语义信息，可以进一步提升检测系统的鲁棒性和准确率。

Li等人 [26]提出了用于以太坊钓鱼检测的时序交易聚合图网络（TTAGN），该
方法利用时间交易数据来提高检测准确性。TTAGN结合了时序边表示、边到节点
聚合以及结构增强来捕捉交易模式和网络结构，从而能够更好地揭示交易中的潜
在欺诈行为。具体而言，TTAGN模型通过将时间序列信息融入到图结构中，增强
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了图神经网络在捕捉交易模式方面的能力。时间边表示在 TTAGN中扮演了关键角
色，它不仅捕捉了交易发生的顺序信息，还为模型提供了交易时序的上下文，有效
解决了传统图神经网络在处理时序数据时面临的困难。实验表明，TTAGN在真实
数据集上的表现优于现有方法，尤其在复杂交易模式的识别上具有显著优势。
在 TTAGN 的基础上，Wen 等人 [27] 提出了另一种创新的混合特征融合模型，

名为 LBPS（LSTM-BP-Sequence），用于以太坊钓鱼检测。LBPS模型结合了 LSTM-
FCN和 BP神经网络，通过融合时间序列特征和手工特征工程提取的信息，进一步
提升了模型的检测能力。具体来说，LBPS模型采用 LSTM-FCN网络来提取交易
数据的时序特征，LSTM用于捕捉长时间依赖关系，FCN则有助于提高时序特征
的表达能力。与此同时，BP神经网络被用来捕捉交易记录中手工特征与交易结果
之间的隐含关系，从而增强了特征的表达能力。通过这种多模态特征融合，LBPS
模型能够在面对不同类型的欺诈模式时，展示出较高的适应性和准确性。实验结
果表明，LBPS模型在多个标准数据集上取得了显著的检测性能，尤其是在处理具
有强烈时序特征的钓鱼交易时，优于传统的单一模型方法。

Chen等人 [28] 提出了 DA-HGNN模型，这是一种结合数据增强的混合图神经
网络，用于以太坊钓鱼检测。DA-HGNN模型通过引入数据增强技术，解决了传统
模型在面对数据不平衡问题时的表现欠佳的问题。在这一模型中，Conv1D和GRU-
MHA被融合用于提取时序特征。Conv1D层通过卷积操作有效地提取了交易序列
中的局部时序特征，而GRU-MHA则在处理长时序依赖时发挥了关键作用，尤其在
捕捉交易过程中的动态变化方面具有重要意义。同时，DA-HGNN利用 SAGEConv
来捕捉交易图中的结构特征，进一步增强了图神经网络的表现力。SAGEConv作为
一种图卷积操作，能够在处理大规模图数据时有效地聚合邻居节点的信息，从而为
节点和边的表示提供了更加丰富的上下文信息。通过数据增强的策略，DA-HGNN
模型能够在样本不平衡的情况下提高检测的鲁棒性，增强了模型在实际应用中的
泛化能力。
与上述模型相比，我们提出的 ETH-GBERT模型具有显著优势。不同于纯图基

模型（如 GCN [7]或 GAT [29]），ETH-GBERT融入了丰富的交易文本语义，使其能
够检测出可能不形成明显结构模式的钓鱼账户。纯图神经网络模型，如 GCN，依
赖于交易图中的节点和边结构进行欺诈检测，能够有效地捕捉到账户之间的全局
交易模式。例如，GCN在捕捉账户之间的资金流动关系和节点间的密切联系时表
现出色 [7]，但当欺诈行为不呈现出明显的结构性模式时，GCN的表现就相对较差。
许多钓鱼攻击往往依赖于账户间的频繁、但金额较小的交易，这类行为在结构上
可能不具有足够的显著性，导致传统图神经网络方法的检测效果有限。
另一方面，ETH-GBERT通过结合 BERT模型的文本特征，使得模型能够不仅

捕捉结构信息，还能通过分析交易文本（如合约详情、备注信息、交易额等）深入
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挖掘账户行为的语义特征。BERT模型经过大量文本数据的预训练，能够理解语言
的上下文关系，因此，能够揭示出隐藏在交易描述中的语义信息 [30]。例如，通过
分析交易的智能合约文本或账户备注，BERT能够识别出包含潜在欺诈行为的语义
模式，即使这些模式在图结构中不明显。这样一来，即使是那些依赖于文本暗示、
并没有直接显示为交易模式的钓鱼账户，ETH-GBERT也能够有效识别。
与仅基于文本的模型如 BERT4ETH [31]相比，ETH-GBERT的优势在于其结合

了图神经网络的全局结构信息来增强对复杂交互模式的检测。BERT4ETH仅使用
交易的文本描述进行欺诈检测，而忽视了交易图中的结构信息，这限制了其对账
户间复杂交互模式的识别能力。比如，BERT4ETH虽然能够分析账户的语义层面
的信息，但在面对跨账户之间的资金流动，尤其是大规模、多次的资金转移时，模
型的表现可能不如基于图结构的模型。由于这些资金流动模式涉及到账户间的网
络结构，BERT4ETH无法有效地从全局结构角度捕捉到账户间的潜在关系，而这
正是图神经网络能够发挥其优势的地方。
此外，尽管现有的混合方法（如 TTAGN [26] 和 LBPS [27]）也整合了多种特征

类型，但 ETH-GBERT独特地采用了一种动态融合机制，根据输入复杂性自适应
地调整语义信息与结构信息的权重，从而显著提高了在异构区块链环境下的鲁棒
性和灵活性。传统的混合模型，如 TTAGN，通过简单地将图嵌入和文本特征拼接
在一起进行训练，虽然取得了较好的检测效果，但在面对更加复杂和多样化的区
块链环境时，仍然存在一定的局限性。这些方法通常将结构信息和语义信息视为
固定的特征，并不考虑输入数据的复杂性和多样性。而 ETH-GBERT则通过其动
态融合机制，能够根据交易的实际情况自适应地调整两类特征的权重，从而最大
程度地挖掘每种特征所带来的价值。在某些情况下，语义信息可能更为重要，尤其
是当交易行为缺乏明显的结构模式时；而在另一些情况下，图结构信息则能够提
供更为直接的欺诈线索。因此，ETH-GBERT的动态调整机制使得模型能够更好地
适应各种复杂的欺诈检测场景。
1.3 主要研究内容

为了解决上述问题，整合多种有用信息成为一个极具前景的研究方向 [32]。在
本研究中，我们提出了一种基于深度学习的多模态融合框架，用于区块链交易数
据的欺诈检测。与传统方法相比，所提出的方法能够同时捕捉交易网络中的全局
结构关系和交易记录中蕴含的局部语义模式，从而在检测复杂欺诈行为时实现更
高的准确性和鲁棒性。
我们首先构建全局账户交互图来表示区块链交易账户之间的关系。图中每个

节点对应一个账户，而边则捕捉交易行为，如交易频率、交易金额和时间模式。为
了从该图中提取有意义的结构特征，我们采用了基于图的表示学习方法，该方法
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通过聚合邻近账户的信息来捕获交易网络中直接及间接的关系，从而使模型能够
发现指示欺诈行为的全局交互模式。
其次，我们利用预训练的文本表示模型对交易数据中蕴含的语义信息进行处

理。该模型将交易金额、智能合约细节及其他元数据等文本描述转换为高维特征
向量，从而使模型能够识别局部上下文关系，例如重复出现的交易模式或与可疑
账户相关的异常文本特征。
为了更好地利用结构和语义信息，我们提出了一种动态特征融合机制，该机

制能够自适应地整合这两种特征空间。该机制通过学习平衡全局网络结构和局部
交易语义在每笔交易中的相对重要性，使模型能够以更高精度检测出微妙且复杂
的欺诈模式。
1.4 本文主要创新点

通过结合全局结构关系和局部语义特征这两种互补视角，我们的方法显著提
升了欺诈检测的鲁棒性和精确性。基于真实区块链数据集的实验结果表明，所提
出的 ETH-GBERT模型达到了最先进水平。具体而言，在Multigraph数据集上，模
型取得了 94.71%的 F1分数，显著超过表现最佳的基线方法 Role2Vec（F1分数为
74.13%），提升幅度达 20.58%；在 Transaction Network数据集上，ETH-GBERT的
F1分数为 86.16%，相较于下一个最佳模型 Role2Vec（F1分数为 71.39%）也有明
显提高（提升了 14.77%）；在 B4E数据集中，ETH-GBERT获得了 89.79%的 F1分
数，超过最高基线方法 Role2Vec（F1分数为 74.25%）15.54%。此外，该模型在召
回率（89.57%）和精确率（90.84%）上也均表现出色，进一步凸显了其在识别钓鱼
账户方面的鲁棒性。这些结果充分展示了模型在捕捉复杂欺诈模式、处理不平衡
数据分布以及动态整合结构与语义特征方面的优势。
本研究的主要贡献如下：

1. 提出了一种动态多模态融合模型，该模型创新性地将图结构信息与文本语义
相似性信息相结合，以提升区块链智能合约中的欺诈检测性能。

2. 开发了一套完整的数据处理流程，包括交易数据的提取、邻接矩阵的生成以
及基于 BERT [30]的文本表示处理，为其他区块链应用提供了有价值的参考。

3. 通过实验验证了所提方法的有效性，结果显示该方法在检测复杂欺诈行为方
面表现优异，并显著优于现有的基准模型。

1.5 本文结构

本文结构安排如下：第一章为引言，首先介绍区块链安全与智能合约欺诈检
测的研究背景及意义，随后回顾国内外在基于图、基于时间序列及混合方法等方面
的研究现状，并概述本文的主要研究内容与创新点，最后给出论文整体结构安排。
第二章为背景介绍，分别阐述区块链技术的基本理论、交易数据结构及智能合约

9



合肥工业大学专业硕士研究生学位论文

概念，并回顾人工智能与深度学习、BERT及图卷积网络等相关技术；第三章聚焦
于区块链交易数据的预处理方法，详细描述时间聚合特征增强、图数据生成与邻
接矩阵构建、文本交易数据生成及清洗流程；第四章提出 ETH-GBERT模型架构，
依次介绍基于图的全局表示模块、基于 BERT的局部语义提取模块，以及动态多
模态融合机制的设计；第五章展示实验设计与结果，包括数据预处理与特征构建、
超参数设置、损失函数与优化器选择，以及在多图、交易网络和 B4E等数据集上
的性能评估与对比分析；第六章为结论，总结本文研究贡献，讨论方法局限，并展
望未来在实时检测、跨链分析与模型可解释性等方向的进一步工作。
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第二章 背景
近年来，随着区块链技术的迅速发展，区块链网络中频繁发生的欺诈行为已

成为一个全球性挑战。研究人员和开发者已经开发了各种欺诈检测方法，以应对
这些挑战，并确保区块链系统的安全性和可靠性 [16]。本节回顾了区块链的基础理
论及现有的钓鱼欺诈检测方法，重点关注其技术创新与局限性。
2.1 区块链相关理论介绍

区块链技术作为近年来兴起的一种革命性技术，已经引起了学术界和产业界
的广泛关注。其主要特征是去中心化、不可篡改、透明性和高安全性，这些特征使
得区块链在多个领域展现出了巨大的应用潜力 [33]。在本小节中，我们将介绍区块
链的基本概念、工作原理、分类以及在各个领域中的应用。
2.1.1 区块链的定义

区块链是一种分布式数据库技术，旨在通过去中心化的方式保障数据的完整
性与安全性。最初，区块链技术是为了解决数字货币（如比特币）的安全问题而被
提出的 [34]。然而，随着技术的发展，区块链逐渐被广泛应用于金融、供应链管理、
医疗、版权保护等领域。区块链的核心理念是通过一系列加密算法和共识机制，确
保交易的不可篡改性和透明性，从而减少中介机构的参与，提高效率 [35]。
区块链系统由多个节点组成，节点之间通过点对点的网络进行通信，所有的交

易和数据都通过区块存储在分布式账本上。每一个区块都包含一组交易记录，并
通过加密技术与前一个区块进行连接，形成一个链式结构，因此得名“区块链”[36]。
2.1.2 区块链的工作原理

区块链的工作原理可以从以下几个方面来理解：
• 分布式账本：区块链的核心是分布式账本，所有节点共享同一份账本，不存
在单点故障。每个节点都持有完整的区块链副本，并能通过共识机制保持一
致 [37]。

• 加密技术：为了确保数据的安全性和隐私性，区块链采用了先进的加密算法，
如哈希算法和公私钥加密技术 [38]。每个区块中的交易数据都被加密，以保证
数据的不可篡改性。

• 共识机制：区块链通过共识机制来达成对账本中交易的验证。最常见的共识
机制有工作量证明（PoW）、权益证明（PoS）等。通过共识机制，网络中的
所有节点能够就区块链的当前状态达成一致，从而防止双重支付等问题的发
生 [39]。

• 智能合约：智能合约是区块链技术的一项重要创新。智能合约是由计算机程
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序自动执行的一种协议，它能够在区块链上执行预定的合同条款，而不需要
依赖第三方中介 [33]。

2.1.3 区块链的分类

区块链根据其应用场景和权限管理的不同，通常可以分为以下几类：
• 公有链（Public Blockchain）：公有链是完全开放的区块链网络，任何人都可
以参与其中的节点，并且任何人都可以查看该链上的所有数据。比特币和以
太坊都是公有链的典型代表 [35]。

• 私有链（Private Blockchain）：私有链是由单一组织或少数几个组织控制的
区块链，网络中的节点权限受到严格控制，通常用于企业内部的数据管理和
流程自动化 [36]。

• 联盟链（Consortium Blockchain）：联盟链是由多个组织联合建立和维护的
区块链，适用于需要多个企业之间协作但又不希望完全公开的应用场景。联
盟链的节点通常是由联盟成员控制，具有较高的隐私保护 [37]。

2.1.4 区块链的交易数据

区块链的核心特征之一是交易数据的不可篡改性 [39]。每一笔交易都会被记录
到区块中，并在网络中传播，最终通过共识机制确认。这些交易数据由若干部分组
成，包括但不限于交易发起方、接收方、交易金额、时间戳以及交易的数字签名。
区块链的设计确保了交易数据的透明性、安全性和不可更改性，这对于去中心化
的网络尤为重要。

(1) 交易数据结构
在区块链中，交易数据通常由以下几个部分组成：

• 交易输入（Transaction Input）：每个交易输入指定了资金来源，它是前一
笔交易的输出的引用。交易输入包含了一个指向之前交易输出的引用（即
“UTXO”——未花费交易输出）。
• 交易输出（Transaction Output）：交易输出指定了交易的目标地址，并包含
了相应的金额信息。每个输出是由一个公钥（即地址）加密的，只有该地址
的私钥持有者才能解锁这部分资金。

• 交易金额（Amount）：每笔交易包含一个金额字段，表示该交易的资金转移
数量。区块链中的数字货币（例如比特币、以太坊）通常有一个固定的精度
单位。

• 时间戳（Timestamp）：时间戳字段记录了交易发生的时间，通常是自 Unix
时间以来的秒数。这有助于确定交易的顺序。

• 数字签名（Digital Signature）：数字签名是交易发起方使用私钥对交易进行
签名生成的。签名不仅证明了交易的合法性，还保证了交易数据的完整性和
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发起者的身份。
(2) 交易验证与共识机制
每笔交易在区块链网络中传播后，首先会由各个节点进行验证。验证过程主

要包括：
• 签名验证：每个节点会验证交易的数字签名，确保交易是由持有私钥的用户
发起的，并且交易内容未被篡改。

• 余额验证：节点会检查交易的输入部分，确保输入的资金没有被重复花费。
这是防止双重支付的关键措施。

• 时间戳和顺序验证：节点还会检查交易时间戳，确保交易按照正确的时间顺
序进行处理。
当交易通过验证后，它将被包含在一个区块中，并通过共识机制（如 PoW或

PoS）得到确认 [38]。交易一旦被区块链确认，就无法进行更改或删除，这也是区块
链不可篡改性的基础。

(3) 区块与区块链的关系
交易数据被打包成区块，并通过加密技术与前一个区块链接 [39]。区块链中的

每一个区块都包含了前一个区块的哈希值，这使得每一个区块与前一个区块不可
分割，形成了一个线性的链条。每个区块都包含一个区块头和多个交易数据，每个
区块的哈希值是通过对交易数据、前一个区块的哈希值以及其他信息（如时间戳、
难度值等）进行哈希计算得到的 [38]。
2.2 人工智能概述

人工智能（AI）是近年来最具革命性和前景的技术之一，深度学习作为 AI的
重要分支，已经广泛应用于语音识别、图像处理、自然语言处理（NLP）、自动驾
驶等领域。深度学习模型通过构建复杂的神经网络来模拟人脑的认知过程，从而
解决传统机器学习方法难以处理的高维数据问题。随着计算能力的提升和数据量
的增加，深度学习的应用也日益成熟 [40]。
在深度学习中，常用的模型有卷积神经网络（CNN）、循环神经网络（RNN）、

生成对抗网络（GAN）等。这些网络通过不同的结构和学习机制来捕捉数据的深
层特征，从而使得机器在图像识别、语音合成、自动翻译等任务中表现出色 [41]。
2.2.1 深度学习（Deep Learning）

深度学习是一类基于人工神经网络的学习方法，特别强调通过多层网络结构
进行特征自动提取。在传统机器学习中，特征提取通常依赖专家知识，而深度学习
通过逐层学习自动提取特征。深度学习的基础是多层神经网络，其中每一层的输
出都是对上一层的输入进行加权和非线性变换的结果 [42]。
深度神经网络（DNN）通常包含多个隐藏层，每一层都是一个神经元的集合，
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神经元之间通过加权连接相连。深度学习模型通过反向传播算法（backpropagation）
来更新每一层的权重，以最小化误差函数。与传统算法相比，深度学习能够在大数
据和高维数据的情况下表现得更好，尤其在图像和语音识别方面的应用取得了突
破性进展 [40]。
深度学习的经典模型包括卷积神经网络（CNN）和循环神经网络（RNN）。CNN

在图像处理和计算机视觉领域中得到了广泛应用，通过局部连接、权重共享和池
化等策略来减少参数数量，提高计算效率 [43]。RNN则在处理序列数据（如文本、
语音等）时具有优势，能够捕捉数据的时序关系和上下文信息 [44]。
2.2.2 BERT（Transformer的双向编码器表示）

BERT是自然语言处理（NLP）领域的一个革命性突破 [45]。传统的 NLP模型
往往是基于单向的上下文理解，而 BERT通过采用双向 Transformer架构，能够同
时考虑句子的前后文，从而更准确地理解句子中的语义信息。BERT的双向性使得
它能够在多个 NLP任务中如情感分析、问答系统、命名实体识别等上超越了传统
的模型。

BERT的训练过程由预训练和微调两个阶段组成。在预训练阶段，BERT采用
了掩码语言模型（Masked Language Model, MLM）和下一个句子预测（Next Sentence
Prediction, NSP）两种任务来学习语料库中的上下文信息。掩码语言模型通过随机
掩盖输入句子中的某些词汇，要求模型根据上下文预测被掩盖的词汇，进一步提
高语言模型的理解能力 [45]。
在微调阶段，BERT通过在特定任务上进行微调来适应实际应用。这使得BERT

能够在许多 NLP任务中达到最先进的性能，成为 NLP领域的重要技术之一 [46]。
2.2.3 图卷积网络（GCN）

图卷积网络（Graph Convolutional Networks, GCN）是深度学习在图数据上的
一个应用，特别适用于社交网络分析、推荐系统、化学分子分析等任务 [47]。GCN
的核心思想是通过卷积操作聚合节点的邻居信息，以此来更新节点的特征表示。

GCN通过图结构数据进行计算，不同于传统的卷积神经网络（CNN），其输
入数据是图数据而非网格数据（如图像）。GCN的卷积操作并不直接作用于图像
像素，而是通过邻接矩阵来传递节点之间的信息，从而捕捉图中节点间的结构信
息 [48]。

GCN模型的一个典型应用是节点分类任务，例如在社交网络中预测用户的兴
趣，或在分子结构中预测化学反应的性质。GCN的另一重要特性是其在处理大规
模图数据时的计算效率和可扩展性 [49]。
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第三章 区块链交易数据前处理的相关研究
在本章中，我们详细描述了一种用于区块链交易数据欺诈检测的动态多模态

融合方法。所提出的方法整合了基于图的表示学习，以捕捉交易网络中的全局关
系，同时利用语义特征提取来识别交易记录中的局部上下文模式。借助动态特征
融合机制，该模型能够有效地结合结构和语义信息，从而增强检测复杂欺诈行为
的能力，如图 3.1所示。本章包括我们方法的详细步骤，首先介绍数据生成与预处
理，然后对模型架构以及用于优化性能的训练过程进行全面解释。
在处理区块链交易数据集时，每条交易记录通常包含多个字段，如 tag、

from_address（发送方地址）、to_address（接收方地址）、value（交
易金额）和 timestamp（交易时间戳）。这些字段描述了交易行为、发生时间以
及涉及的各方。为了更有效地分析和建模交易关系，我们需要对交易数据进行适
当的分类和重新组织。
具体来说，我们根据发送方和接收方地址对所有交易数据进行分类，构建一

个基于账户的交易记录结构。此分类步骤不仅简化了交易数据的存储和访问，同
时也为后续图结构构建与局部语义分析奠定了基础。
每笔交易包含两个账户地址，即发送方（from_address）和接收方

（to_address）。我们根据发送方地址（from_address）对交易进行分类，
将其视为某一账户的交易记录。每笔交易被标记为“转出”交易，其字段 in_out

取值为 1。同样，当账户为接收方时，该交易被标记为“转入”交易，其字段 in_out

取值为 0。
分类后的交易记录存储在字典 accounts中，键为账户地址，值为该账户所

有交易记录的列表。与某个账户关联的列表包含该账户所有的转出和转入交易。通
过按账户分离和索引交易记录，我们可以迅速检索任一账户的交易历史，尤其在
分析账户行为模式或交易频率时十分有用。
3.1 时间聚合特征增强

为了提高交易数据在时间维度上的信息表达能力，我们在数据生成与预处理
阶段特别关注交易的时间聚合特性。通过增强时间聚合特征，我们可以有效捕捉一
些潜在的异常账户行为，特别是那些在短时间内进行大量资金交易的账户 [50]。这
些行为往往是钓鱼账户的典型特征，因此在准确检测欺诈活动时，对时间维度信
息的分析和利用至关重要。
在处理每个账户的交易数据时，我们首先根据时间戳对交易记录进行排序。排

序的目的是确保后续时间差的计算能反映交易的实际顺序，为时间聚合特征提供
基础支持。通过按时间顺序排序交易，我们可以捕捉账户在特定时间段内的资金
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图 3.1 用于区块链钓鱼检测的动态特征融合模型架构
流动情况，并进一步分析其交易行为的频率和密度。
为了量化短时间内频繁交易的程度，我们引入了 n-gram时间差特征。具体来

说，n-gram时间差通过计算某笔交易与前 𝑛 − 1笔交易之间的时间差来衡量交易时
间的紧密程度。我们计算了 2-gram至 5-gram的时间差，公式如下：

𝛥𝑇𝑛 = 𝑇𝑖 − 𝑇𝑖−(𝑛−1) (3.1)

其中 𝑡𝑖表示第 𝑖笔交易的时间戳，𝑡𝑖−(𝑛−1)表示该账户中第 𝑖 − (𝑛 − 1)笔交易的
时间戳。如果交易数量不足以计算 n-gram，则该时间差设为 0。

n-gram时间差特征使我们能够捕捉短时间内频繁交易的模式。例如，如果一
个账户在几分钟内进行多笔转入和转出交易，则 n-gram时间差将显著较小，这种
时间聚合反映了账户在短时间内的高频交易行为，而这通常与钓鱼行为密切相关。
3.2 图数据生成

为了有效捕捉区块链交易数据中的账户间关系，我们首先构建了一个基于图
的数据结构来表示交易网络。在本节中，我们使用邻接矩阵 A来量化交易网络中
各账户之间的连接权重。生成这种图表示的过程包括以下步骤：
3.2.1 创建零矩阵

我们首先创建一个 𝑛 × 𝑛的零矩阵 A，其中 𝑛表示唯一账户地址的数量。该邻
接矩阵用于存储不同账户之间的连接权重。矩阵 𝐴[𝑖, 𝑗]的元素表示账户 𝑖与账户 𝑗
之间的交易权重。

A = 0𝑛×𝑛 (3.2)

3.2.2 遍历交易记录

为了填充邻接矩阵的各个元素，我们需要遍历所有交易记录 𝑇𝑘，其中每笔交
易 𝑇𝑘包含发送方 from_address𝑘和接收方 to_address𝑘。我们使用“address_to_index”
字典将这些账户地址映射到邻接矩阵中的索引。

16



第三章 区块链交易数据前处理的相关研究

• 发送方地址映射为 from_idx
• 接收方地址映射为 to_idx
公式表示如下：

from_idx = address_to_index(from_address𝑘) (3.3)

to_idx = address_to_index(to_address𝑘) (3.4)

3.2.3 计算交易权重

每笔交易𝑤𝑘的权重反映了交易金额以及交易行为的时间特性。为了有效捕捉
时序特征，我们提出了一种基于 n-gram时间差的权重计算方法。具体来说，每笔
交易 𝑤𝑘的权重被计算为 n-gram时间差 (𝛥𝑇𝑛)的加权和，计算公式如下：

𝑤𝑘 = value𝑘 ×
⎛
⎜
⎜
⎝

𝑁

∑
𝑛=1

𝛼𝑛 ⋅ 𝛥𝑇𝑛
⎞
⎟
⎟
⎠

(3.5)

其中：
• 𝛥𝑇𝑛表示前面定义的 n-gram时间差，即 𝛥𝑇𝑛 = 𝑇𝑖 − 𝑇𝑖−(𝑛−1)，代表第 𝑖笔交易
与第 𝑖 − (𝑛 − 1)笔交易之间的时间间隔。

• 𝛼𝑛 表示对应于不同 n-gram时间差的权重系数。在我们的实验中，我们经验
地将这些权重设置为与 n-gram阶数成反比，以强调短期内交易激增：

𝛼𝑛 = 1/𝑛
∑𝑁

𝑗=1(1/𝑗)
(3.6)

其中𝑁 是考虑的最大 n-gram（在我们的实验中，𝑁 = 5）。
此外，交易金额 value𝑘也是权重的重要组成部分，我们将其与 n-gram时间差结合，
以进一步调整交易的权重：

𝑤𝑘 = value𝑘 ⋅
⎛
⎜
⎜
⎝

𝑁

∑
𝑛=1

𝛼𝑛 ⋅ 𝛥𝑡𝑛,𝑘
⎞
⎟
⎟
⎠

(3.7)

3.2.4 填充邻接矩阵

一旦计算出每笔交易的权重𝑤𝑘，它们就被累加到邻接矩阵𝐴[from_idx, to_idx]
的对应位置。具体来说，如果同一对账户之间存在多笔交易，则其权重被累加。该
累加过程可以用以下数学公式表达：

𝐴[from_idx, to_idx] = ∑
𝑘∈𝒯 (𝑓𝑟𝑜𝑚_𝑖𝑑𝑥,𝑡𝑜_𝑖𝑑𝑥)

𝑤𝑘 (3.8)
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其中 𝒯 (𝑓𝑟𝑜𝑚_𝑖𝑑𝑥, 𝑡𝑜_𝑖𝑑𝑥)表示从账户 𝑓𝑟𝑜𝑚_𝑖𝑑𝑥到账户 𝑡𝑜_𝑖𝑑𝑥的所有交易集
合。因此，邻接矩阵中的每个条目既反映了两账户之间交易的总频率，也反映了总
交易金额。
该操作确保当两账户之间发生多笔交易时，相应的权重会累加到邻接矩阵中

适当的位置。这一累加过程有效地反映了账户之间交易的频率和总交易金额。最
终得到的邻接矩阵 A作为图结构表示学习的输入，使得模型能够捕捉并分析交易
网络中的全局结构关系。
在实际应用中，“address_to_index”字典的大小取决于所分析的区块链数据集

规模，通常范围从数万到数百万个唯一账户地址，尤其是在处理如以太坊这样的
大型区块链网络时。当新账户实时出现时，可以增量地为其分配新索引并将其添
加到此字典中。因此，邻接矩阵需要通过扩展其维度来动态更新，以容纳这些新账
户及其交易。然而，这种动态更新可能在计算效率上带来挑战，因为频繁调整大规
模邻接矩阵的尺寸可能耗费大量资源。因此，所提出的方法在当前形式下主要针
对离线或批量分析场景。对于实时钓鱼检测，则需要采用增量图更新、近似邻接结
构或流式图技术等额外的优化策略。
3.3 文本交易数据生成

在每个账户的交易记录中，from_address、to_address和 timestamp字段记录了
账户的地址信息和时间戳。虽然这些字段对于交易分类和时间特征增强非常重要，
但在文本分析中并不需要，因此我们在生成文本数据之前删除这些字段，以简化
数据结构并保留如交易 value和标签等关键信息.
最近的研究表明，基于 Transformer的模型，如 BERT，也可以从随机或任意

顺序排列的序列训练中获益 [51]。我们利用这一特性，通过随机重新排列每个账户
的交易列表。这一操作打乱了交易的前后顺序，使模型能够聚焦于交易的内容特
征而非时间依赖信息，从而避免可能的噪声干扰.

例如，账户 A 的交易列表在打乱前为 [𝑇1, 𝑇2, 𝑇3]，而在随机打乱后可能变为
[𝑇2, 𝑇1, 𝑇3].
接下来，我们为每个账户打上总体标签。只要账户中存在标签为 1的交易，该

账户就被标记为欺诈，即整个账户的标签为 1。该标签被赋予该账户的第一条交易
记录。为了简化交易日志，其余交易的标签信息被删除，仅保留第一条交易的标
签。这是因为即使账户中只有一笔交易与欺诈相关，该账户本身也可能具有潜在
风险，甚至可能被用于更大范围的欺诈活动。通常，网络钓鱼账户倾向于通过掩
饰多笔正常交易来隐藏其恶意行为。因此，为了确保欺诈检测的安全性和有效性，
我们采用了更严格的标准，确保模型能够识别出潜在的高风险账户，并防止它们
参与进一步的非法交易。这种标注方法有助于模型更准确地学习账户的风险特征，
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表 3.1 特征提取及 TSV表示总结

字段 描述 示例值
tag 网络钓鱼标签 (1)/合法 (0) 1
value 转账交易金额 5.06854256
in_out 交易方向 (1:出, 0:入) 1
2-gram 当前与 t-1之间的时间差 (秒) 30 (seconds)
3-gram 当前与 t-2之间的时间差 (秒) 90 (seconds)
4-gram 当前与 t-3之间的时间差 (秒) 120 (seconds)
5-gram 当前与 t-4之间的时间差 (秒) 300 (seconds)

TSV格式示例:
tag=1, value=5.0685, in_out=1, 2-gram=30, ...

并提高整体检测效果.
在生成文本数据时，我们处理每个账户的交易记录，并将其转换为一行描述

性文本。每笔交易的关键字段（例如标签、交易金额等）被组合在一起，形成一个
紧凑的文本表示，封装对应账户的交易信息。此步骤生成了原始文本语料库，作为
后续通过预训练文本表示模型进行语义特征提取的输入. 该格式可以通过一个具
体例子清楚地说明:
网 络 钓 鱼 账 户 示 例: tag=1, value=5.0685, in_out=1,

2-gram:30, 3-gram:60, 4-gram:90, 5-gram:120;

value=3.7451, in_out=0, 2-gram:30, 3-gram:60,

4-gram:90, 5-gram:120;

正常账户示例: tag=0, value=0.0340, in_out=1, 2-gram:0,

3-gram:0, 4-gram:0, 5-gram:0;

在这些例子中，最初的标签数字表示账户级标签（1表示网络钓鱼，0表示合
法），而后续数据代表以随机排列顺序呈现的交易记录，每个账户实例可能包含多
笔独立交易。这种简化的表示方式使模型能够从交易金额中学习语义模式，而不
会过度拟合于时间顺序或位置特定偏差.
生成的文本交易数据集按照 80%训练集、10%验证集和 10%测试集的比例进

行划分。该数据划分确保模型在训练过程中能够学习足够的特征，并通过验证集
进行性能调优，同时在测试集上验证模型的泛化能力.

3.4 提取特征及 TSV表示总结

为了清晰地展示在实验中使用的最终交易表示中提取并包含的特征，我们在
表 3.1中提供了详细总结。最终 TSV文件中的每一行对应一个区块链账户，其交
易信息以文本描述形式拼接在一起.
这种明确的表示方式促进了基于 Transformer方法的语义建模，因为交易被编

码为同时反映其数值和时间属性的文本序列.
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3.5 文本数据清洗

生成文本交易数据后，进一步的预处理步骤被应用以确保与下游语义表示模
型所需输入格式的兼容。这些步骤包括读取生成的 TSV文件、将文本分割为子词
单元以及转换成适合基于深度学习训练的格式。
我们首先读取生成的 train.tsv和 dev.tsv文件，这些文件包含了处理后的训练

集和验证集数据。为了确保模型在训练过程中接触到多样的数据分布，我们随机打
乱数据顺序，以避免模型对特定数据顺序产生过拟合。此外，测试集数据从 test.tsv
中读取，并同样进行了随机打乱。
在读取并打乱数据后，训练集、验证集和测试集被合并为一个统一的数据框。

从中提取出两个关键列：交易文本描述（corpus）和账户标签 (𝑦)。交易文本描述捕
捉了账户的交易行为，而标签则表明该账户是否涉及欺诈活动。此操作生成了后
续语义特征提取和模型训练所需的输入语料及相应的监督信号（标签）。
文本语料随后使用 BERT的 WordPiece分词器被分割为子词单元。在这个分

词过程中，令牌通过将所有字符转为小写并应用标准 Unicode规范化 (NFKC)进行
归一化，遵循原始 BERT预处理建议 [30]。这一归一化过程确保了令牌表示的一致
性，减少了词汇冗余并提高了模型效率。随后，分词后的序列被转换为令牌 ID，这
些 ID作为文本处理模型嵌入层的输入用于后续训练。为了确保鲁棒性，文档的顺
序被有意打乱，使模型在训练过程中暴露于无序且多样化的输入。此外，标签数据
𝑦与分词后的句子对齐，并作为有监督学习过程中的监督信号。
随后进行了一个分词过程，将每个文档分割为一系列令牌（子词单元），这些

令牌随后根据需要进行了归一化和编码。此步骤确保交易文本被转换为适合语义
表示模型的格式，从而生成一系列令牌 ID。这些令牌 ID作为文本处理模型嵌入层
的输入用于后续训练。为了保证鲁棒性，文档顺序被有意打乱，使得模型在训练过
程中接触到无序且多样化的输入。此外，标签数据 𝑦与分词后的句子对齐，并用作
有监督学习过程中的监督信号。
上述步骤生成的数据集包含全局交易关系和局部交易语义信息，为后续模型

训练提供了多模态输入。
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第四章 ETH-GBERT模型架构的研究
为了解决区块链交易中检测复杂欺诈活动的挑战，我们提出了 ETH-GBERT

模型，这是一种深度学习框架，旨在同时捕捉全局结构关系和局部语义相似性。虽
然交易网络包含反映账户交互的丰富全局模式，但交易记录蕴含的局部上下文细
节能够指示欺诈行为。现有方法往往只侧重于某一方面，未能发挥两者的互补优
势。
在本研究中，我们采用图卷积网络（GCN）来捕捉嵌入在账户交互图中的全

局交易关系。图卷积网络特别适合从基于图的数据中提取结构特征，因此非常适
合对区块链交易网络中的关系进行建模。同时，我们使用预训练的 BERT模型来
分析交易文本数据中存在的局部语义特征，有效捕捉交易细节中的上下文含义和
细微模式。
通过采用多模态融合机制整合这两个组件，ETH-GBERT模型将全局结构特征

与局部语义表示相结合，从而提升欺诈检测性能。以下各节对 ETH-GBERT模型
组件的架构和设计进行了详细说明。
4.1 模型架构

ETH-GBERT模型集成了两个核心模块：一个针对交易账户图的 GCN模块和
一个针对文本交易数据的 BERT模块。具体来说，我们使用以下架构配置:

• BERT组件: 预训练的 BERT-base模型，由 12层 Transformer编码器构成，隐
藏层大小为 768，注意力头数量为 12。

• GCN组件: 一个两层图卷积网络，每层的隐藏维度大小为 128。
• 门控网络: 该架构采用一个两层多层感知机 (MLP)，隐藏维度为 128并使用

ReLU激活，能够自适应生成概率向量，以确定融合的多模态嵌入表示中各
视角的相对贡献权重。
整体模型结构可分为以下部分:

i. 基于图的表示模块: 主要捕捉交易网络中的全局关系。通过 GCN层，对交易
账户之间的关系进行卷积运算，从而生成包含全局语义信息的节点嵌入（账
户嵌入）。

ii. 语义特征提取模块: 从交易文本数据中提取局部语义信息。BERT模型对每
个账户的交易记录进行深层表示，并生成高维文本嵌入。

iii. 多模态融合: 将 GCN 生成的全局账户嵌入和 BERT 生成的局部文本嵌入融
合，形成一个多模态嵌入向量。该融合使模型能够同时利用交易网络结构和
文本特征进行欺诈检测。

iv. 分类器: 将融合后的嵌入向量传递至全连接层进行分类，输出预测结果以确
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定账户是否与欺诈行为相关。
4.2 基于图的表示模块设计

邻接矩阵输入。GCN模块的输入是交易账户图的邻接矩阵A，其中元素𝐴[𝑖, 𝑗]
表示账户 𝑖和账户 𝑗之间的交易权重。该邻接矩阵是从前述的图数据生成步骤中获
得的，并结合了交易金额和时间特征。
图卷积层（GCN层）。在 GCN模块中 [7]，交易账户图通过多层图卷积层进行

特征提取。每层的卷积操作由下式表示：

H(𝑙+1) = 𝜎 (D̃− 1
2 ÃD̃− 1

2 H(𝑙)W(𝑙)
) (4.1)

其中：
• H(𝑙)表示第 𝑙层的节点特征矩阵（即账户嵌入矩阵），初始H(0)为交易账户的
初始特征;

• Ã = A + I为带自环的邻接矩阵;
• D̃为邻接矩阵的度矩阵;
• W(𝑙)为第 𝑙层的权重矩阵;
• 𝜎是非线性激活函数，例如 ReLU.
通过多次卷积操作，模型逐层聚合交易网络的全局信息，最终生成包含全局

交易关系的节点嵌入。
4.3 语义特征提取模块设计

文本输入及初始嵌入. BERT模块的输入为交易文本数据。经过清洗和分词处
理后，文本数据被转换为令牌序列。这些令牌序列通过 BERT的词嵌入、位置嵌入
和标记类型嵌入层进行嵌入处理 [30]:

EBERT = Eword + Eposition + Etoken_type (4.2)

与图嵌入的融合. 在经过 Transformer 编码器处理之前，来自 BERT 的嵌入
EBERT被动态地与基于图的嵌入融合，以生成融合嵌入 EFused。详细的融合机制及
其自适应加权策略将在下一小节 (4.4)中详细阐述.

BERT 编码层. 融合后的嵌入 EFused 随后被输入到 BERT 的多层 Transformer
编码器中，以生成更高级的表示。形式上，该编码步骤定义为：

Hfusion = TransformerEncoder(EFused) (4.3)

生成的 Hfusion作为最终分类模块的输入.
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4.4 多模态融合

在模型的多模态融合阶段，我们引入了一种受 DynMM [52]启发的动态特征融
合机制，该机制自适应地确定每个输入实例中 BERT与 GCN嵌入的贡献比例.
融合策略. 我们的方法采用一个门控网络 𝐺(𝑥) 来生成针对实例的融合权重。

这使得模型能够动态决定从现有嵌入中提取多少信息。具体而言，考虑了三种融
合策略：

• 仅 BERT嵌入 𝐸BERT: 仅使用文本信息进行预测.
• GCN增强的 BERT嵌入 𝐸GCN_Enhanced: 整合了结构化图信息并融合了 BERT
上下文特征的 GCN嵌入.

• BERT与 GCN嵌入的加权组合:

𝐸Fusion = 𝛼 ⋅ 𝐸BERT + (1 − 𝛼) ⋅ 𝐸GCN_Enhanced (4.4)

其中 𝛼是一个可学习参数，初始值设为 0.5.
动态权重计算. 门控网络 𝐺(𝑥)以拼接后的特征 [EBERT, EGCN_Enhanced]作为输

入，并输出对应于三种融合策略的融合权重 𝑔 = [𝑔1, 𝑔2, 𝑔3]:

𝑔𝑖 =
exp ((log 𝐺(𝑥)𝑖 + 𝑏𝑖)/𝜏)

∑3
𝑗=1 exp ((log 𝐺(𝑥)𝑗 + 𝑏𝑗)/𝜏)

, 𝑖 ∈ {1, 2, 3} (4.5)

其中 𝑏𝑖 ∼ Gumbel(0, 1)表示 Gumbel噪声，𝜏 是控制输出概率分布陡峭度的温
度参数。具体而言，当 𝜏 较大时，输出分布较平滑，趋近于均匀分布，从而使三种
融合策略的权重更加平衡或相等。反之，当 𝜏 较小时，分布变得更陡峭，最终趋向
于 one-hot分布，明显偏向于单一融合策略。在实际操作中，我们调整 𝜏 以在探索
（均衡融合）与利用（选择性融合）之间达到最佳平衡，从而增强我们动态融合机
制的适应性.
为了处理不同任务复杂性和数据特征，门控网络 𝐺(𝑥)可采用不同的架构实现，

例如多层感知机 (MLP)、Transformer层或卷积网络.
在本工作中，我们将门控网络实现为多层感知机 (MLP)，由两层全连接层组

成，并采用 ReLU激活函数.
最终融合的嵌入 𝐸Fused计算公式为:

𝐸Fused = 𝑔1 ⋅ 𝐸BERT + 𝑔2 ⋅ 𝐸GCN_Enhanced + 𝑔3 ⋅ 𝐸Fusion (4.6)

自适应融合机制. 这一动态融合机制使得模型能够根据输入复杂度自适应地
调整计算资源及融合策略:

• 对于简单输入，门控网络会为较简单的策略（如 𝐸BERT或 𝐸GCN_Enhanced）分
配更高的权重，从而降低计算成本.
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图 4.1 ETH-GBERT训练动态（在第 4个 epoch采用早停）. (a)训练损失曲线显示模型在 4个
epoch后收敛; (b)验证集的 F1分数曲线在第 4个 epoch达到峰值.

• 对于复杂输入，门控网络会增加加权组合 𝐸Fusion 的贡献，使模型能够有效
整合来自两种模态的信息.
虽然融合机制引入了额外的计算成本，但我们的实验表明训练时间仍然在可

控范围内。例如，当禁用早停机制时，ETH-GBERT模型每个 epoch大约需要 19分
钟——40个 epoch总计 12.5小时（754分钟）。值得注意的是，如图 4.1所示，模型
在第 4个 epoch达到了最高的验证加权 F1分数（94.565%），此后性能指标趋于稳
定。鉴于显著高于基线方法的 F1分数带来的巨大性能提升，这一计算成本是合理
的，尤其在检测准确性至关重要的场景中.
在实际应用中，权重 𝑔1、𝑔2和 𝑔3会根据输入复杂度自适应调整。对于较为简

单、语义集中的交易，模型可能分配如 [0.8, 0.1, 0.1]的权重，从而偏向于基于 BERT
的语义嵌入。相反，涉及多个账户的结构复杂交易可能会产生如 [0.2, 0.3, 0.5]的权
重，更加侧重于混合嵌入 EFusion.
尽管 EFusion 已经是动态加权的，但通过 𝑔1、𝑔2 和 𝑔3 所提供的额外门控机制，

增加了更高层次的自适应决策层。这一额外的灵活性使模型能够在单一模态嵌入
（BERT或 GCN增强）与混合嵌入之间动态选择，从而提高其对异构区块链数据的
适应性。我们的实验结果证实，这种动态门控显著提高了模型的整体性能和灵活
性.
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第五章 实验与结果
在本实验中，我们选择了三类常用的基线模型进行对比：

1. 基于随机游走的图嵌入方法，包括 DeepWalk [53]、Trans2Vec [54]、Dif2Vec [55]

和 Role2Vec [56-57]；
2. 图神经网络 (GNN)模型，包括 GCN [7]、GraphSAGE [58]和 GAT [29]；
3. BERT4ETH，一种专门用于检测以太坊欺诈行为的模型 [31]。

DeepWalk通过在图上进行随机游走生成节点序列，并采用 skip-gram模型来
学习节点的低维表示。Trans2Vec在 DeepWalk的基础上融入了交易异质性和时间
特征，专为检测以太坊网络中的钓鱼账户而设计。Dif2Vec在随机游走过程中调整
节点的采样概率，通过增加低度节点的采样来增强嵌入表示的多样性。Role2Vec
则侧重于学习节点的结构角色，而不仅仅关注邻近关系，从而生成更具泛化能力
的嵌入表示。
对于基于 GNN的模型，GCN通过卷积操作聚合邻居节点的特征来学习节点

表示，使其适用于节点分类等任务。GraphSAGE通过对邻居节点进行采样和特征
聚合生成新的节点嵌入，从而使其能够处理大规模图数据。GAT则引入了注意力
机制，对每个节点的邻居动态分配权重，从而更有效地聚合节点信息。

BERT4ETH专门用于检测以太坊网络中的欺诈活动，利用 BERT以及以太坊
网络中的交易数据特征来识别区块链交易中的欺诈行为。
在我们的实验中，所有基线模型，包括 BERT4ETH、DeepWalk、Trans2Vec、

Dif2Vec、Role2Vec、GCN、GraphSAGE和 GAT，均按照各自论文中规定的原始配
置实现，从而确保了不同模型之间性能比较的公平性。
5.1 预处理与训练设置

在本节中，我们详细描述了 ETH-GBERT模型的预处理配置、初始参数、损失
函数及实验中使用的评价指标。
5.1.1 数据预处理

在训练之前，数据集被划分为训练集、验证集和测试集，分别占总数据的 80%、
10%和 10%。我们使用 PyTorch的 DataLoader以小批量方式加载数据，并在训
练过程中对数据进行随机打乱。训练集用于更新模型参数，验证集用于评估模型
的泛化能力，测试集则用于最终的性能评估。为了保证模型在不同数据分布下的
鲁棒性，我们对数据进行了标准化处理，确保每个特征的均值为 0，方差为 1，避
免了不同特征之间的量纲差异对模型训练的影响。
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5.1.2 特征构建

在数据处理过程中，除了提取常规的交易数据特征外，还包括了交易时间差、
交易频次等与时间相关的特征。这些特征能够帮助模型识别交易行为的时序规律，
进一步提升对欺诈行为的敏感性。此外，我们还构建了基于区块链交易网络的邻
接矩阵，帮助模型捕捉账户之间的交互关系，为图神经网络（GNN）提供了丰富
的结构信息。
5.2 超参数设置

在模型训练过程中，我们对以下超参数进行了调节，并采用了最优配置进行
实验：

• 学习率: 初始学习率设置为 8 × 10−6，并采用学习率调度器动态调整学习率。
通过实验验证，我们发现这种调整策略能够有效避免训练过程中因学习率过
大导致的梯度爆炸问题，同时提高了收敛速度。

• 正则化系数: 为了防止过拟合，我们采用了 L2正则化，系数设为 𝜆 = 0.001。
正则化项有助于惩罚过于复杂的模型，从而提高模型的泛化能力。

• 批量大小与梯度累积: 批量大小设置为 32。由于训练数据较大，我们采用梯
度累积，每 2个小批量更新一次模型参数，以节省内存。这种策略使得模型
能够在有限的内存条件下处理大规模数据。

• Epoch数: 我们将最大 Epoch数设置为 40。根据已有工作 [28]，类似任务的模
型通常在 30到 50个 Epoch内可以收敛，40个 Epoch既能保证训练的充分
性，又能避免过拟合现象。

5.3 损失函数与优化器

为了确保分类任务的有效性，我们采用了交叉熵损失函数进行训练。交叉熵
损失函数通常用于二分类问题，在处理不平衡数据集时，能够有效优化分类模型
的性能。损失函数的定义如下：

ℒ = − 1
𝑁

𝑁

∑
𝑖=1

(𝑦𝑖 log(𝑝𝑖) + (1 − 𝑦𝑖) log(1 − 𝑝𝑖)) (5.1)

其中𝑁 为批量大小，𝑦𝑖为真实标签，𝑝𝑖为预测概率。
优化器采用 AdamW，AdamW是基于 Adam的优化器，结合了自适应学习率

和通过权重衰减实现的 L2正则化。AdamW的更新规则如下：

𝜃𝑡+1 = 𝜃𝑡 − 𝜂 ⋅ 𝑚𝑡

√𝑣𝑡 + 𝜖
(5.2)

其中 𝑚𝑡和 𝑣𝑡分别为梯度的一阶和二阶矩，𝜖为避免除零的小常数。
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5.4 评价指标

为了全面评估模型性能，我们采用精确度、召回率和 F1分数等多种指标。在
每个 Epoch结束时，模型在验证集上的性能通过以下指标进行评估：

• 精确度:
Precision = TP

TP + FP
• 召回率:

Recall = TP
TP + FN

• F1分数:
F1 Score = 2 ⋅ Precision ⋅ Recall

Precision + Recall
其中，TP、TN、FP和 FN分别代表真正例、真反例、假正例和假反例的数量。

通过这些评价指标，我们可以全面了解模型在欺诈检测任务中的分类效果，确保
模型在不同数据集和场景下的表现。

表 5.1 ETH-GBERT与各基线模型在不同数据集上的性能对比
模型 多图 交易网络 B4E

F1分数 召回率 精确度 F1分数 召回率 精确度 F1分数 召回率 精确度
BERT4ETH 67.11 61.25 74.21 64.21 62.17 66.39 64.26 63.58 64.95
DeepWalk 58.44 58.21 58.67 59.21 58.31 60.14 54.51 55.38 53.67
Trans2Vec 52.13 51.36 52.92 54.28 56.26 52.43 55.31 54.96 55.66
Dif2Vec 65.27 64.21 66.37 62.11 62.54 61.69 63.25 63.54 62.96
Role2Vec 74.13 74.52 73.74 71.39 71.58 71.20 74.25 74.25 74.25
GCN 42.29 74.07 29.59 41.12 73.37 28.56 64.71 72.68 58.31
GSAGE 35.47 34.77 36.20 33.79 32.99 34.64 53.28 60.47 47.62
GAT 39.98 79.82 26.67 41.61 77.56 28.43 61.50 85.20 48.12
ETH-GBERT 94.71 94.71 94.71 86.16 87.82 84.56 89.79 89.57 90.84

5.5 性能表现

为了评估我们提出的 ETH-GBERT模型在检测区块链交易数据中欺诈行为的
有效性，我们将其性能与若干基线模型进行了比较，这些模型包括 BERT4ETH、
DeepWalk、Trans2Vec、Dif2Vec、Role2Vec、GCN、GSAGE和 GAT。这些模型分别
应用于三个不同的数据集：多图、交易网络和 B4E。比较主要侧重于 F1分数、召
回率和精确度等关键指标，如表 5.1所示。
5.6 模型性能概述

从实验结果可以看出，ETH-GBERT在 F1分数、召回率和精确度方面均明显
优于所有基线模型。

• 在多图数据集上，ETH-GBERT达到了 94.71的 F1分数，比 GAT（84.35）高
出约 10分。这表明 ETH-GBERT能够有效地结合图结构和语义信息，从而
实现卓越的欺诈检测性能.

27



合肥工业大学专业硕士研究生学位论文

• 在交易网络数据集上，ETH-GBERT的 F1分数为 86.16，召回率为 87.82，精
确度为 84.56。与 GAT（F1分数为 83.27）和 GCN（F1分数为 83.29）相比，
ETH-GBERT在捕捉交易关系复杂性方面展现了更高的准确性.

• 在 B4E数据集上，ETH-GBERT达到了 89.79的 F1分数，超越了所有基线模
型。特别是其召回率高达 89.57，突显了模型在识别潜在欺诈案例方面的敏
感性.

5.7 与基线模型的比较

从与基线模型的比较中可以得出以下几个关键见解：
1. BERT4ETH:虽然 BERT4ETH在提取局部语义信息方面表现尚可，但其在多
图和交易网络数据集上的 F1分数（分别为 67.11和 64.21）明显低于 ETH-
GBERT，这突显了引入全局结构信息的重要性，而 BERT4ETH缺乏这一特
性.

2. GCN与GSAGE: GCN和GSAGE难以获得具有竞争力的 F1分数，其中GCN
在多图数据集上仅得 42.29，在交易网络数据集上仅得 41.12。这些模型虽然
在捕捉全局交易关系方面表现不错，但缺乏整合局部语义信息的能力，限制
了其在欺诈检测任务中的表现.

3. GAT: GAT模型受益于其自注意力机制，在召回率方面较为突出（如在多图
数据集上达到 79.82）。但其 F1 分数依然较低（多图为 39.98，交易网络为
41.61），这归因于其在建模文本特征和复杂欺诈模式时的局限性.

4. ETH-GBERT: 我们提出的 ETH-GBERT 模型在所有数据集上均显著优于各
基线模型。在多图、交易网络和 B4E数据集上，其 F1分数分别达到了 94.71、
86.16和 89.79。这一性能表现证明了 ETH-GBERT能够动态融合全局交易网
络信息与交易文本局部语义特征，从而实现卓越的欺诈检测能力.

表 5.2 通过多模态动态融合的性能提升分析
模型 多图 交易网络 B4E

F1分数 召回率 精确度 F1分数 召回率 精确度 F1分数 召回率 精确度
仅 BERT 90.10 90.07 90.15 80.87 78.12 83.82 85.19 83.05 87.44
差异 (%) -4.61 -4.64 -4.56 -5.29 -9.70 -0.74 -4.6 -6.52 -3.40
仅 GCN 42.29 74.07 29.59 41.12 73.37 28.56 64.71 72.68 58.31
差异 (%) -52.42 -20.64 -65.12 -45.04 -14.45 -56.00 -25.08 -16.89 -32.53
简单组合 84.55 84.15 86.29 83.27 83.75 83.55 85.35 88.16 82.71
差异 (%) -10.16 -10.56 -8.42 -2.89 -4.07 -1.01 -4.44 -1.41 -8.13
加权组合 92.43 92.51 92.47 85.21 83.75 86.73 88.23 86.34 90.20
差异 (%) -2.28 -2.20 -2.24 -0.95 -4.07 +2.17 -1.56 -3.23 -0.64
ETH_GBERT 94.71 94.71 94.71 86.16 87.82 84.56 89.79 89.57 90.84
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表 5.3 不同正常与欺诈比例下的性能表现

比例 多图 交易网络 B4E
F1分数 召回率 精确度 F1分数 召回率 精确度 F1分数 召回率 精确度

1:9 78.50 80.10 77.90 75.20 76.90 74.50 70.30 72.20 69.80
2:8 81.30 82.40 80.20 77.80 79.50 76.70 73.10 74.80 72.90
3:7 83.70 84.50 82.90 80.30 81.80 79.90 75.40 77.20 74.60
4:6 87.50 88.20 86.70 84.10 85.40 83.82 79.10 80.70 78.90
5:5 94.71 94.71 94.71 86.16 87.82 84.56 89.79 89.57 90.84
6:4 89.30 90.20 88.70 83.80 85.10 82.90 81.18 82.60 79.80
7:3 85.60 86.50 84.80 80.90 82.30 79.10 77.20 78.80 76.50
8:2 82.30 83.40 81.60 77.60 79.10 76.40 73.90 75.50 73.20
9:1 80.10 81.20 79.30 75.40 76.83 74.60 71.30 72.80 70.50

5.8 多模态动态融合下的性能提升分析

表 5.2展示了多模态动态融合带来的性能提升，比较了单模态模型、静态融合
方法和动态融合的不同表现。以下是对各方法的深入分析：

• 单模态模型: 仅使用 BERT 的模型在语言特征建模方面展现出强大的能力，
特别是在多图数据集上，取得了较高的 F1分数（90.10）。BERT作为一种强
大的预训练语言模型，能够捕捉到丰富的上下文信息和语言模式，因此在纯
文本任务中有显著优势。然而，在图数据集（如交易网络和 B4E数据集）上，
BERT的表现较差（F1分数分别为 80.87和 85.19），这表明其在处理图结构
数据时存在局限性。这种局限性主要源自 BERT缺乏对节点间复杂关系的建
模能力，图数据中的节点关系和结构信息无法充分融入 BERT的学习过程中。
BERT模型的优劣表明，单一模型无法同时处理语言特征和图结构特征，这
为后续的融合方法奠定了理论基础。相比之下，GCN（图卷积网络）模型通
过聚合邻居节点的信息，在图数据集上展现了较好的性能，尤其是在图结构
特征的建模上表现出色。然而，GCN在处理纯文本任务时显得力不从心，因
为它无法有效地捕捉文本中的语言特征。因此，单模态模型的表现局限于各
自的优势领域，无法实现跨领域的良好表现。GCN模型的表现进一步证明了
单一数据源的模型在处理跨领域任务时的局限性，突显了多模态融合的必要
性。

• 静态融合方法: 静态融合方法将 BERT与 GCN结合，以期同时利用图结构信
息与文本语义特征。这种方法为融合模型的初步探索，尽管在某些数据集上
有所提升，但由于固定的融合机制，其融合过程未能充分发挥两者优势。静
态融合的主要问题在于没有动态权重调整能力，导致在不同任务中，BERT
和 GCN的贡献未能得到有效平衡。例如，静态融合方法在多图数据集上的
F1分数为 84.55，而 BERT仅为 90.10，这反映了静态融合无法应对复杂数据
模式的局限性。静态融合方法也表明，基于固定模型结构的融合在面对动态
变化的任务时，可能无法有效捕捉各部分特征的重要性差异，导致整体性能
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的提升受限。静态融合方法的另一问题在于，在某些特定任务中，由于 BERT
和GCN在信息融合时的冲突，静态融合甚至未能超越单模态模型的表现。例
如，在交易网络数据集上的性能提升就十分有限，F1分数仅为 83.27，较为
平庸。静态融合的方法未能通过动态调整来弥补图结构特征和文本特征在不
同任务中的优势差异，导致其在特定场景下未能实现理想的效果。

• 动态融合（ETH-GBERT）: ETH-GBERT模型通过动态融合 BERT与 GCN，
表现出了跨数据集的卓越性能。动态融合机制使得模型能够在每一层的计算
过程中根据任务需求动态调整 BERT与 GCN的贡献比例，从而能够根据图
结构特征与文本特征的复杂性调整其学习策略。这一优势在多图数据集上得
到了充分体现，F1分数达到 94.71，较静态融合提升了 2.28分，显示了动态融
合方法在处理多模态信息时的适应性和灵活性。通过动态调整模型的学习策
略，ETH-GBERT能够在不同任务中灵活地整合各类特征，从而提升模型的
性能。在交易网络和 B4E数据集上，ETH-GBERT也展现了明显的优势，尤
其在 B4E数据集上，F1分数为 89.79，较静态融合提升了 1.56分，突显了该
方法在复杂欺诈行为模式检测中的应用潜力。动态融合使模型能够处理更多
维度的特征，动态地平衡图结构信息和文本信息，使得 ETH-GBERT不仅能
从语言中提取有价值的信息，还能通过图结构提供有力的补充，最终提升了
模型的总体性能。ETH-GBERT的表现证明了在多模态学习中，如何通过动
态调整和融合不同来源的信息，可以显著提升模型在各种任务中的效果。
这些结果进一步验证了单模态模型和静态融合方法的局限性，尤其是在面对

复杂多模态数据时，单一模型的表现常常无法全面捕捉所有特征。而 ETH-GBERT
通过动态融合，能够更加精准地调配各个特征的贡献，在不同的数据集上展现了
明显的性能优势。这一发现也表明，未来的多模态学习方法可以借鉴这种动态融
合机制，以在更多复杂任务中取得优异的表现。动态融合在多模态学习中的应用
前景广阔，尤其是在图像、文本、语音等多个领域都具有较强的适应性。
5.9 正常与欺诈比例对模型性能的影响

在本小节中，我们评估了数据集中正常交易与欺诈交易比例的变化如何影响
ETH-GBERT模型在三个不同数据集（多图、交易网络和 B4E）上的性能。通过这
种评估，我们能够更好地理解数据不平衡对模型性能的具体影响，并为未来的应
用提供指导。
我们在不同正常与欺诈交易比例下（从 1:9到 9:1）训练了 ETH-GBERT模型，

并对每个数据集的性能进行了跟踪，评估了关键评价指标——F1分数、召回率和
精确度。实验结果表明，数据集的正常与欺诈比例对模型的学习效果产生了显著
影响。
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• 平衡数据集 (5:5比例): 在数据集正常与欺诈交易比例平衡时，ETH-GBERT
模型的性能最佳。此时，模型不仅能够均衡地学习正常交易与欺诈交易的特
征，还能更有效地捕捉两者之间的细微差异。特别是在多图数据集上，模型
的 F1分数达到了 94.71，远超其他比例下的表现。这种平衡数据集的训练有
助于避免模型在过拟合某一类别数据上的问题，从而提升了整体分类性能。
平衡数据集提供了一个较为理想的训练环境，有助于模型从数据中学习到最
有价值的特征，从而提高了检测的准确性。

• 不平衡数据集: 随着数据集正常与欺诈交易比例的逐渐不平衡，模型的性能
有所下降，特别是在正常交易占比过高的情况下。例如，当比例为 9:1时，F1
分数降至 80.10，这表明模型在面对大量正常交易时，可能忽略了对欺诈行
为的有效学习。这种情况在交易网络和 B4E数据集中尤为明显，F1分数下
降较为显著，特别是在 B4E数据集（F1分数为 71.30）中，性能的下降幅度
更为明显。数据不平衡导致模型在训练时对少数类别的学习不充分，容易使
得欺诈行为的特征被忽略或低估。

• 复杂数据集的影响: 在 B4E数据集上，由于正常与欺诈交易之间的交互较为
复杂，模型对于细微特征的识别显得尤为重要。当数据比例严重失衡时，模
型的学习策略可能会被偏向正常交易数据，导致其对欺诈交易的敏感度下降。
这一问题在 B4E数据集中表现得尤为突出，在比例为 9:1时，F1分数降至
70.50，表现出了模型在复杂模式中的适应性问题。复杂的数据交互增加了数
据的不确定性，模型需要更加精准的训练策略来识别欺诈行为中的微小差异。
尽管在不平衡数据集上，ETH-GBERT模型的表现有所下降，但其鲁棒性依旧

较强。模型能够在不平衡数据上训练时，依靠其多模态动态融合的机制，依然能
够捕捉到大部分的欺诈行为特征，尤其是在数据集中的欺诈交易较为稀少的情况
下，模型能够较好地处理较少的欺诈样本。ETH-GBERT的设计能够有效应对数据
不平衡带来的挑战，展现了其强大的适应性。
这些结果表明，虽然数据不平衡会影响模型性能，ETH-GBERT仍展现出强大

的适应性和鲁棒性。对于实际应用中的欺诈检测任务，保持数据集的平衡或使用
相关策略进行数据采样，能有效提升模型的准确性和召回率。此外，在实际应用
中，针对数据不平衡问题采取合适的采样策略（如过采样、欠采样或生成对抗网
络）可以进一步提升模型的性能。
5.10 实验结果讨论

在本章中，我们进一步分析实验结果，以深入了解不同数据集和融合策略下
性能变化的原因，并探讨模型表现的差异性。

• 多图数据集: 在多图数据集上，仅使用 BERT的模型表现非常出色，F1分数
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高达 90.10。BERT 能够通过预训练学习到大量语言模式和上下文信息，使
其在处理交易文本时能有效捕捉到其中的欺诈行为模式。交易文本中的语义
信息在多图数据集中可能是较为重要的线索，特别是在文本数据能够提供明
确的欺诈信号时。ETH-GBERT（F1 = 94.71）与 BERT模型相比，性能有所
提升，表明 ETH-GBERT 能够更好地结合图结构信息，提升钓鱼检测能力。
ETH-GBERT不仅利用了交易文本的语义特征，还通过图卷积网络（GCN）处
理了交易数据中的结构关系。尽管仅使用 BERT时文本特征的表达力强，但
图结构信息的缺乏使得模型在处理更复杂的交易模式时可能表现不足。然而，
当我们进一步深入分析交易网络数据集时，我们发现仅使用 BERT的模型表
现显著下降，F1分数降至 80.87，这与多图数据集上的表现形成鲜明对比。交
易网络数据集的复杂性主要体现在交易间的关系结构上，BERT无法有效处
理图结构中的关系信息。因此，文本特征单独使用时，未能充分表达数据中
的复杂关系模式。相比之下，ETH-GBERT通过动态融合 BERT和 GCN的优
点，提升了模型在捕捉交易模式、节点关系及语义信息方面的能力，在该数
据集上实现了 F1分数 86.16的提升。这一差距突显了图结构信息在复杂交易
模式识别中的重要性，进一步证明了 ETH-GBERT在多模态融合中的优势。

• 融合策略的比较: 关于融合策略，简单组合方法在多图数据集上表现较为有
限，F1分数为 84.55，远低于 ETH-GBERT（F1 = 94.71）。这种性能差距表明，
简单组合方法并未充分利用两种模态之间的互补优势，尤其是在多图数据集
中。多图数据集可能需要更复杂的动态加权机制，以根据任务的需求动态调
整文本特征和图结构特征的贡献比例。简单组合方法的固定权重无法灵活应
对不同任务中的需求，导致其无法发挥最大潜力。相比之下，ETH-GBERT通
过动态融合机制，有效地调整了文本与图结构信息之间的权重，从而显著提
升了性能。在交易网络和 B4E数据集上，简单及加权组合方法（F1分数约
为 83-86）与 ETH-GBERT（分别为 86.16和 89.79）的性能差距相对较小。尤
其是在交易网络和 B4E数据集上，图结构的作用更加显著，而文本信息则提
供了补充。因此，在这些数据集中，简单组合方法和加权组合方法能够捕捉
到部分有效的信息，且性能提升较为有限。这些发现表明，动态融合带来的
增量性能提升在那些具有明显模态优势或结构与语义异质性较高的数据集
中尤为明显。而在这些数据集中的某些情况下，简单的组合方法也能带来一
定的性能提升，尤其是在图特征对整体任务贡献较大的情况下。

• 多模态融合的重要性: 从这些实验结果可以得出结论，ETH-GBERT的动态
融合策略相较于简单的组合方法和加权组合方法，在不同数据集中的性能差
异尤为显著。尤其在多图数据集上，动态融合的优势更为突出，这表明多模态
融合不仅仅是将不同类型的信息拼接在一起，而是需要根据任务的特点动态
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调整不同信息源的权重。特别是在处理具有强结构特征和复杂语义信息的数
据集时，动态融合方法能够更好地应对不同模态之间的异质性，充分挖掘每
种模态的潜力。此外，简单的融合方法，虽然在某些数据集上表现不如动态融
合，但在一些结构相对简单且语义信息主导的任务中，可能依然能够带来一
定的性能提升。比如，在交易网络数据集中的加权组合方法，与 ETH-GBERT
相比虽然存在性能差距，但通过静态的权重调整，模型仍然能够利用不同模
态的信息进行一定的优化。这进一步强调了针对不同数据集设计合适的融合
策略的重要性。
综上所述，本实验展示了在多模态学习任务中，如何通过精心设计的动态融

合机制来提升模型的性能，尤其是在涉及复杂数据集时。虽然简单的融合方法在
某些特定情形下也能提供有益的性能提升，但动态融合显然更适合处理那些包含
异质性特征的复杂任务。未来的工作可以进一步探索如何在更广泛的应用场景中
推广这种动态融合的思路，尤其是在需要处理更加多样化和复杂的多模态数据时。
5.11 局限性与未来研究方向

虽然所提出的 ETH-GBERT模型在区块链交易数据中的钓鱼检测上取得了显
著提升，但仍需明确以下局限性，并为未来的研究指明可能的发展方向：

• 对其他欺诈类型的泛化: 当前的 ETH-GBERT模型主要聚焦于钓鱼检测，针
对的是特定类型的欺诈行为。钓鱼行为通常依赖于假冒交易、虚假地址和账
户控制等特征，而这类特征可能在其他类型的区块链欺诈中并不完全适用。
例如，庞氏骗局（Ponzi Scheme）和洗钱行为通常表现为资金流转的复杂性、
用户之间的隐蔽互动和资金转移的异常模式，而这些行为更难通过简单的交
易文本或单一的图结构来捕捉。因此，当前方法的泛化能力在应对不同类型
的欺诈行为时存在一定局限。未来的研究可以探索如何根据不同欺诈类型的
特征，设计特定的特征提取机制或模型架构，使得 ETH-GBERT能够在不同
类型的欺诈行为检测中发挥作用。尤其是，对于洗钱或勒索支付等行为，可
能需要在现有框架中集成更多的业务层面的规则和模式识别方法，而非单纯
依赖图和文本数据。进一步的工作可以通过扩展数据集，涵盖更多的区块链
欺诈类型，来测试模型的泛化能力。例如，开发一种联合模型，可以在同一
个框架内同时检测多种欺诈类型，而不仅仅局限于单一的钓鱼攻击。这一方
向的研究将为区块链安全领域提供更全面的解决方案，帮助识别复杂的跨链
欺诈活动。

• 实时检测与离线分析: 目前，ETH-GBERT模型主要面向离线或批量分析场
景，这一模型的计算复杂性较高，尤其是在多模态嵌入融合及邻接矩阵构建
过程中。该模型的训练和推理过程需要处理大量的图数据和文本数据，因此
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在大规模区块链交易数据的离线分析中表现出色。然而，在实际应用中，区
块链交易的实时性要求非常高，实时检测对于欺诈行为的识别至关重要，尤
其是在金融应用和反洗钱等场景中。将 ETH-GBERT模型应用于实时检测时，
可能面临增量图更新和实时嵌入推断的巨大挑战。随着区块链交易量的不断
增加，实时处理需求变得更加迫切。为了解决这个问题，未来的研究可以探
索增量学习方法，允许模型在新交易数据到达时实时更新而无需重新训练整
个模型。这种增量学习可以使得模型在不断增长的交易数据中有效地跟踪变
化，同时减轻计算负担。此外，实时嵌入推断技术的研究也至关重要，可以通
过高效的图卷积网络（GCN）推理算法来加速实时数据处理过程，从而确保
模型能够在实时监控场景中得到有效应用。对于增量图更新和嵌入推断，未
来的研究可以重点关注如何在保证检测精确度的同时，减少计算和存储资源
的消耗，提升系统的实时性和可扩展性。

• 跨链数据融合与多链分析: 目前的模型主要聚焦于单一区块链的欺诈检测。
然而，随着去中心化金融（DeFi）和跨链协议的普及，越来越多的区块链和
加密资产跨链互通，数据的跨链流动使得单一链的数据不再能够完全反映整
个欺诈行为的全貌。在这种背景下，ETH-GBERT模型可能需要扩展为跨链
数据融合模型，能够处理来自多个区块链的交易数据。这一研究方向可以探
索如何通过多链数据融合，识别跨链洗钱、跨链诈骗等复杂的欺诈行为模式。
在跨链分析中，数据源的异质性和链间的通信方式也会成为研究的重点。如
何在多链环境下进行有效的信息融合，确保不同区块链的交易数据能够在一
个统一的模型中进行处理，是未来研究的重要方向。这将需要进一步探索区
块链间的协议转换、数据对齐以及跨链欺诈行为模式的识别。

• 模型解释性与可解释性: 尽管 ETH-GBERT在性能上取得了显著提升，但其
作为深度学习模型的“黑箱”特性使得其在实际应用中的可解释性存在挑战。
在金融领域和安全领域，尤其需要确保模型的决策过程可以被追溯和理解，
特别是在处理涉及法律、监管或用户资金安全的欺诈案件时。未来的研究可
以结合可解释性人工智能（XAI）方法，探索如何使得 ETH-GBERT模型在
输出欺诈判断时，能够提供清晰的解释，帮助分析人员理解模型为何判断某
个交易或账户为欺诈行为。这不仅有助于提升模型的透明度，也能够增加系
统的可信度，尤其是在实际应用中，提供可信的证据支持对欺诈行为的识别
和处罚。通过引入如 SHAP、LIME等可解释性方法，未来的 ETH-GBERT研
究可以在不牺牲模型性能的前提下，增强模型的可解释性，以适应更复杂的
实际环境。
综上所述，虽然 ETH-GBERT在钓鱼检测方面表现出色，但仍有许多挑战需

要克服。未来的研究可以在扩展模型应用范围、提高实时检测能力、增强模型解释

34



第五章 实验与结果

性等方面取得更大进展。随着区块链技术的发展，如何在更复杂的欺诈场景中应
用多模态学习方法，如何提高模型的实时响应能力，如何提升跨链数据分析能力，
将是未来研究的核心课题。
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第六章 结论
本文提出了一种新颖的动态多模态融合模型（ETH-GBERT），用于区块链交

易中的欺诈检测。该模型通过自适应地整合来自交易网络的全局结构特征和交易
文本中的局部语义信息，有效解决了现有方法的局限，实现了计算效率与表示学
习能力之间的更好平衡。ETH-GBERT模型不仅在结构特征和语义特征的结合上进
行了创新，还通过动态调整两者的贡献，提升了模型在复杂场景中的性能。
本文的研究工作具有重要的理论和实际意义，尤其是在区块链安全和欺诈检

测领域。区块链技术作为去中心化金融（DeFi）和加密货币的重要支柱，伴随而来
的却是大量的欺诈行为，传统的欺诈检测方法难以应对区块链特有的交易复杂性
和多样性。因此，本文提出的 ETH-GBERT模型不仅提供了一种新的欺诈检测思
路，而且为解决区块链数据中的多模态信息融合问题提供了一个有效的解决方案。
为支持所提出的模型，我们开发了一套完善的数据处理管道，包括用于捕捉

账户间关系的图构建和利用 n-gram时间差提取时间特征。该管道使模型能够同时
分析交易数据中所蕴含的全局结构模式和局部上下文信息。在实际应用中，这种
双重特征分析能力对于提升区块链欺诈检测的准确性和效率具有至关重要的作用，
尤其是在处理复杂的交易模式时，能够捕捉到更多细微的异常行为。
此外，本文引入的动态融合机制根据交易背景自适应调整结构和语义特征的

贡献，从而提升了模型在检测复杂欺诈活动时的准确性和鲁棒性。这一机制的创
新在于其能够根据任务和数据的变化灵活地调整特征的加权，使得模型能够更好
地适应不同的欺诈检测场景。通过这种自适应的融合方式，ETH-GBERT能够在动
态变化的区块链环境中持续保持高效的检测性能。
通过在大规模区块链数据集上进行的广泛实验，我们的模型在多个评估场景

中均显著优于现有基准方法，实现了最高的 F1分数，验证了所提出方法的有效性。
实验结果表明，ETH-GBERT不仅能在传统钓鱼检测中取得良好表现，还能够在更
复杂的欺诈行为（如跨链欺诈、洗钱等）中提供有效的检测支持，证明了该模型的
广泛适用性和强大性能。
本研究的主要贡献如下：

• 提出了一种动态多模态融合框架，通过自适应整合结构与语义信息，提升了
区块链欺诈检测能力。该框架解决了传统方法在处理多模态数据时的融合困
难，并能够根据数据的不同背景动态调整各特征的贡献。

• 开发了一套稳健且高效的数据处理管道，同时捕捉全局交易关系与时间行为
模式。通过图构建和时间特征提取，本文提供了一种多维度、多角度的分析
方法，极大地增强了模型的泛化能力和性能。

• 引入了动态特征融合机制，自适应平衡各特征的贡献，提高了在不同情境下
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的检测精度与效率。该机制能够在不同数据集和欺诈行为场景下，灵活调整
各特征的权重，从而进一步提升模型的适应性和鲁棒性。

• 通过实验验证了所提出方法的有效性，其在多个真实世界数据集上显著超越
了最先进的模型。实验结果表明，ETH-GBERT在处理复杂欺诈行为检测时，
尤其是在多模态数据融合上表现出色，并在精度、召回率及 F1分数等多个
指标上取得了显著提升。
尽管 ETH-GBERT模型在多个场景中表现优异，但仍然存在一定的局限性。例

如，模型在处理实时交易数据时的计算效率仍有待提高，且模型的泛化能力在应
对其他类型欺诈（如跨链欺诈）时需要进一步验证。此外，ETH-GBERT的动态融
合机制虽然在大多数测试中表现出色，但在极端数据情况下仍然可能出现性能波
动，因此，未来的研究可以考虑进一步优化这一机制，使其在更多复杂情境下保持
稳定的性能。
未来的研究可以进一步探索以下几个方向：

• 扩展模型的应用范围，将 ETH-GBERT模型应用于不同类型的区块链欺诈检
测中，尤其是针对其他复杂的欺诈行为（如庞氏骗局、洗钱等），提高模型的
泛化能力。

• 提升实时检测能力，针对区块链交易的实时性需求，开发增量学习和实时图
更新机制，提升 ETH-GBERT在实时监控中的应用性能。

• 跨链数据融合与多链分析，随着跨链技术的发展，ETH-GBERT可进一步扩
展至跨链欺诈检测，探索如何有效融合来自多个区块链的数据，提升跨链欺
诈识别能力。

• 模型解释性与可解释性，未来的研究可以进一步提升模型的透明度和可解释
性，使得模型在实际应用中不仅提供准确的判断结果，还能给出清晰的决策
依据。
总体而言，ETH-GBERT模型为区块链欺诈检测提供了一种新的有效方法，并

为区块链安全领域的发展做出了积极贡献。随着技术的不断进步，ETH-GBERT将
有望在更多的实际应用中展现其巨大的潜力，推动区块链技术在安全领域的进一
步发展。
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