
F

E
r
J
a

b

c

d

A

D
N

K
E
T
G
J

1

p
t
r
B
e
a
l
f

t
g
i
c
p
f

h
R

Information Fusion 120 (2025) 103074

A
1

Contents lists available at ScienceDirect

Information Fusion

journal homepage: www.elsevier.com/locate/inffus

ull length article

thereum fraud detection via joint transaction language model and graph

epresentation learning
ianguo Sun a,c, Yifan Jia a , Yanbin Wang b,c ,∗, Ye Tian c, Sheng Zhang d
Yantai Research Institute, Harbin Engineering University, Yantai, Shandong, China
Department of Engineering, Shenzhen MSU-BIT University, Shenzhen, China
Hangzhou Research Institute, Xidian University, Hangzhou, Zhejiang, China
Hefei University of Technology, China

 R T I C L E I N F O

ataset link: https://github.com/lincozz/TLmG
N

eywords:
thereum fraud detection
ransaction language model
raph information fusion
oint training

 A B S T R A C T

Ethereum faces growing fraud threats. Current fraud detection methods, whether employing graph neural
networks or sequence models, fail to consider the semantic information and similarity patterns within
transactions. Moreover, these approaches do not leverage the potential synergistic benefits of combining both
types of models. To address these challenges, we propose TLMG4Eth that combines a transaction language
model with graph-based methods to capture semantic, similarity, and structural features of transaction data
in Ethereum. We first propose a transaction language model that converts numerical transaction data into
meaningful transaction sentences, enabling the model to learn explicit transaction semantics. Then, we propose
a transaction attribute similarity graph to learn transaction similarity information, enabling us to capture
intuitive insights into transaction anomalies. Additionally, we construct an account interaction graph to capture
the structural information of the account transaction network. We employ a deep Multi-Head Attention
Network to fuse transaction semantic and similarity embeddings, and ultimately propose a joint training
approach for the Multi-Head Attention Network and the account interaction graph to obtain the synergistic
benefits of both. Our model achieves performance improvements ranging from 9.62% to 13.2% over state-of-
the-art methods on two public datasets and a newly introduced dataset. Our code is available at the following
link: https://github.com/lincozz/TLmGNN.
. Introduction

Blockchain technology has revolutionized various industries by
roviding a decentralized and secure method for recording transac-
ions [1]. Among blockchain platforms, Ethereum stands out for its
obust support of smart contracts and decentralized applications [2].
y introducing the concept of a programmable blockchain, Ethereum
nabled developers to create applications beyond basic financial trans-
ctions [3]. This innovation has established Ethereum as a foundational
ayer for numerous blockchain applications, including decentralized
inance (DeFi) and non-fungible tokens (NFTs) [4–7].
The growing adoption and value of Ethereum have, however, at-

racted malicious actors intent on exploiting the platform for financial
ain. Fraudulent activities within the Ethereum ecosystem primar-
ly include phishing, Ponzi schemes, transaction manipulation, and
ounterfeit dApps. Alarmingly, phishing scams constitute a significant
ortion of malicious fraud within the blockchain ecosystem, accounting
or approximately 50% of such incidents [8]. Phishing and fraud have

∗ Corresponding author.
E-mail addresses: jgsun@xidian.edu.cn (J. Sun), wangyanbin15@mails.ucas.ac.cn (Y. Wang).

become significant challenges within the Ethereum ecosystem. Phishing
typically involves deceiving users into revealing sensitive information
for financial gain, often via fake websites or messages [9]. Fraud spans
a range of activities, including transaction manipulation and counterfeit
dApps, aimed at deceiving users or systems for profit. The scale of
these threats is evident in recent data. According to the Chainalysis
2023 Crypto Crime Report [10], USD 39.6 billion worth of crypto-assets
were received by identified illicit addresses, representing 0.42% of total
on-chain transaction volume—an increase from the previous year’s
USD 23.2 billion. This trend highlights the urgent need for effective
detection and mitigation measures within the Ethereum network.

Ethereum fraud detection primarily relies on analyzing historical
transaction records of accounts. Current methods predominantly em-
ploy Graph Neural Networks (GNNs) to model account transaction
networks, or utilize sequence models such as Transformers [11] to
process transaction histories. GNNs excel at capturing complex rela-
tionships and structural patterns within transaction networks [12–14],
ttps://doi.org/10.1016/j.inffus.2025.103074
eceived 25 November 2024; Received in revised form 24 February 2025; Accepte
vailable online 13 March 2025
566-2535/© 2025 Elsevier B.V. All rights are reserved, including those for text and
d 1 March 2025

 data mining, AI training, and similar technologies.

https://www.elsevier.com/locate/inffus
https://www.elsevier.com/locate/inffus
https://orcid.org/0009-0009-2125-0109
https://orcid.org/0000-0003-1682-5712
https://github.com/lincozz/TLmGNN
https://github.com/lincozz/TLmGNN
https://github.com/lincozz/TLmGNN
https://github.com/lincozz/TLmGNN
https://github.com/lincozz/TLmGNN
https://github.com/lincozz/TLmGNN
https://github.com/lincozz/TLmGNN
https://github.com/lincozz/TLmGNN
https://github.com/lincozz/TLmGNN
https://github.com/lincozz/TLmGNN
https://github.com/lincozz/TLmGNN
https://github.com/lincozz/TLmGNN
https://github.com/lincozz/TLmGNN
https://github.com/lincozz/TLmGNN
https://github.com/lincozz/TLmGNN
https://github.com/lincozz/TLmGNN
https://github.com/lincozz/TLmGNN
https://github.com/lincozz/TLmGNN
https://github.com/lincozz/TLmGNN
https://github.com/lincozz/TLmGNN
https://github.com/lincozz/TLmGNN
https://github.com/lincozz/TLmGNN
https://github.com/lincozz/TLmGNN
https://github.com/lincozz/TLmGNN
https://github.com/lincozz/TLmGNN
https://github.com/lincozz/TLmGNN
https://github.com/lincozz/TLmGNN
https://github.com/lincozz/TLmGNN
https://github.com/lincozz/TLmGNN
https://github.com/lincozz/TLmGNN
https://github.com/lincozz/TLmGNN
https://github.com/lincozz/TLmGNN
https://github.com/lincozz/TLmGNN
https://github.com/lincozz/TLmGNN
mailto:jgsun@xidian.edu.cn
mailto:wangyanbin15@mails.ucas.ac.cn
https://doi.org/10.1016/j.inffus.2025.103074
https://doi.org/10.1016/j.inffus.2025.103074
http://crossmark.crossref.org/dialog/?doi=10.1016/j.inffus.2025.103074&domain=pdf

J. Sun et al. Information Fusion 120 (2025) 103074
Fig. 1. The distribution patterns of the transaction count and lifespan of identified phishing accounts.

while sequence models are proficient in discerning temporal patterns
and evolving behaviors [15–17].

However, current research fails to consider several crucial aspects:
(1) Transaction Semantics: Existing approaches rely on historical trans-
action data in its numerical form, which lacks the context to interpret
underlying intentions. As a result, the explicit meaning of transactions
remains obscure, hindering models from understanding transaction se-
mantics beyond mere numbers. (2) Transactional Similarity: Extracting
similarity information from transaction attributes (such as amount,
direction, and timing) is crucial for distinguishing between normal and
anomalous transactions. Previous studies have overlooked the modeling
of attribute similarities, which can offer direct insights into fraudulent
behavior patterns. (3) Synergistic Optimization: While some studies
have attempted to combine GNNs with sequence models, they typically
adopt a late fusion approach, training the models separately and con-
catenating their features at the final stage. This approach fails to fully
realize the potential synergies between the two methods.

To address the current challenges, we propose TLMG4Eth, which
combines a transaction language model (TLM) with two transaction
graphs to enhance Ethereum fraud detection, offering new insights
for strengthening the security of the decentralized finance ecosystem.
We first train a transaction language model to learn explicit transac-
tion semantics from transaction sentences, where transaction attributes
(amount, direction, time, and other numerical data) are represented as
words. Next, we propose a transaction attribute graph to model global
semantic similarities between transactions and construct an account
interaction graph to model transaction behaviors between accounts.
We fuse transaction semantics, similarities, and structural informa-
tion through a two-stage approach. First, we use a deep Multi-Head
Attention Network to fuse the semantic embeddings and similarity
embeddings of transactions. Then, we propose to jointly train the Multi-
Head Attention Network with the account interaction graph to leverage
their synergistic benefits.

Our main contributions include:

• We propose a transaction language model that transforms numerical
transaction sequences into transaction sentences, clearly expressing
transaction content and enabling the learning of explicit transaction
semantics.

• We propose a transaction attribute similarity graph to model global
semantic similarities between transactions, thereby capturing intu-
itive insights into transaction anomalies.

• We use a Multi-Head Attention Network to fuse transaction semantic
and similarity information. Furthermore, we propose jointly training
this Multi-Head Attention Network with an account interaction graph
to obtain the benefits of both.

• Our proposed method significantly outperforms current state-of-the-
art approaches, improving F1 Scores by 9.62%%-13.2% across three
datasets.

• We release a new dataset providing an up-to-date view of phishing
activities on the Ethereum transaction network, facilitating further
research in this area.
2
2. Background and related work

2.1. Background

In the Ethereum network, there are two main types of accounts:
Externally Owned Accounts (EOAs) and Contract Accounts.

Externally Owned Accounts (EOAs) EOAs are controlled by private
keys held by users. These accounts can initiate transactions to transfer
cryptocurrency or trigger contract executions. We primarily focus on
EOAs because they are directly controlled by humans, making them
more susceptible to phishing and other fraudulent activities.

Contract Accounts These accounts are essentially smart contracts,
which are self-executing programs running on the Ethereum blockchain.
Contract accounts cannot initiate transactions themselves but can exe-
cute internal transactions when triggered by EOAs [18,19].

Internal Transactions These transactions are initiated by smart
contracts and occur within the blockchain. They are typically used for
complex operations within contracts and are not directly initiated by
users.

External Transactions These are transactions initiated by EOAs,
involving the transfer of cryptocurrency to other EOAs or contract
accounts. External transactions are our primary focus because they
directly reflect user activities and are more likely to reveal fraudulent
behavior [20,21].

The focus on EOAs and external transactions is crucial for detect-
ing fraud because these transactions provide clear insights into user
behavior and potential phishing activities. Internal transactions, while
important, do not offer the same direct evidence of user-controlled
activities.

Phishing accounts on Ethereum tend to have very short lifespans.
This is because once a phishing account is identified and reported, it
is quickly flagged and often deactivated by the community or relevant
authorities. As shown in Fig. 1 our investigation into 7067 identified
phishing accounts revealed that 6454 of these accounts have fewer than
100 transactions each. This indicates that phishing operations often
involve creating multiple accounts that execute a limited number of
transactions to avoid detection and maximize their impact before being
flagged.

2.2. Related work

Graph-based methods Graph-based methods construct transaction net-
works between accounts and employ graph embedding algorithms or
GNNs for model training. [22–24] use Node2Vec to extract features
from Ethereum transaction networks for fraudulent account detection.
Trans2Vec [25] utilizes DeepWalk [26], dividing representation learn-
ing into node, edge, and attribute learning for classification. TGC [8]
employs subgraph contrastive learning with statistical data for phishing
address identification. [27,28] construct statistical features based on
transaction records and apply these features to the graph representa-
tion learning method based on the attention mechanism. SIEGE [29]

J. Sun et al. Information Fusion 120 (2025) 103074
Fig. 2. The framework of proposed Joint Transaction Language Model and Graph Representation Learning.

proposes a self-supervised incremental graph learning model, which
effectively improves the performance of Ethereum phishing fraud de-
tection through spatiotemporal pre-tasks and incremental learning.
TokenScout [30] uses time graph learning technology to build a dy-
namic graph model to monitor Ethereum token trading behavior and
achieve early detection of fraudulent tokens.
Sequence-based methods Graph-based approaches may struggle with
high-frequency, repetitive transactions and long-term temporal pat-
terns, leading some researchers to adopt sequence models that treat
transactions as time-ordered event streams. BERT4ETH [31] and ZipZap
[32] exemplifies this approach, employing a BERT-like structure with
a Transformer architecture to process chronological transaction events.
It uses a masked language model for pre-training by randomly masking
transaction addresses, then fine-tunes a Multi-Layer Perceptron (MLP)
network for account classification.
Hybrid methods TSGN [33] introduces a transaction subgraph network
model for phishing detection, integrating Handcrafted and Diffpool
features while enhancing classification with diverse mapping mecha-
nisms. Similarly, TTAGN [34] adopts a multi-step approach, leverag-
ing Edge2Node for edge aggregation, time-based transaction graphs
with LSTM for temporal patterns, and statistical feature extraction,
ultimately combining these representations for classification. [35] pro-
poses a new Ethereum transaction fraud detection technology based on
a stacking method, which effectively improves the ability to identify
fraudulent behavior by integrating the advantages of multiple mod-
els. [36] uses a method that combines convolutional neural networks
and XGBoost classifiers to distinguish normal accounts from illegal
accounts based on transaction history. Grabphisher [37] extracts ac-
count features by extracting account temporal features and capturing
dynamic topological information during graph evolution, constructing
the evolution pattern of transaction accounts into a continuous-time
diffusion network graph.

Existing graph-based deep learning and graph embedding meth-
ods have made significant strides in fraud detection by effectively
capturing structural properties and complex dependencies within trans-
action networks. However, they fail to preserve the transaction order,
overlook position embeddings, and lack the integration of semantic
information from transaction attributes with structural data. These
limitations hinder their ability to fully understand transaction contexts.
Although Transformer-based sequence models can capture transaction
sequence information, they are less effective than graph-based methods
3
in capturing key account interactions and topological information.
Specifically, they still rely on context-independent numerical features
of accounts and fail to incorporate explicit transaction semantics. Our
proposed TLMG4Eth method addresses these challenges by combining
a transaction language model with a multi-head attention network,
effectively capturing both semantic and structural aspects to enhance
detection performance.

Beyond individual model improvements, traditional model-ensemble
approaches, while leveraging the strengths of multiple models, often
suffer from limited interaction and inter-model communication. Typ-
ically, these methods treat each model as an isolated entity, merely
aggregating outputs post-hoc without fostering dynamic collaboration
during training. In contrast, our approach employs a joint training
framework, enabling continuous feedback and shared parameter opti-
mization among models. This synergistic interaction not only enhances
individual model performance but also allows them to dynamically
adapt to each other’s strengths and weaknesses, resulting in a more
cohesive and robust system capable of capturing complex patterns and
interdependencies within transaction data.

3. Method

In this section, we introduce in detail how TLMG4Eth integrates
the pre-trained language model with GNNs to achieve the fusion
of sequence and network structure information. The architecture of
TLMG4Eth is depicted in 2. For a clearer understanding, our ex-
planation is divided into the following parts: Transaction Language
Model, Transaction Attribute Similarity Graph, Semantic and Similarity
Embedding Fusion, Account Interaction Graph, Joint Training of MAN
and AIG. Several important notations used in this paper are summarized
in Table 1.

3.1. Transaction language model

The Transaction Language Model (TLM) consists of two main parts:
first, we create a linguistic representation of numerical transaction data;
second, we employ a language model to extract semantic embeddings
from transaction sentences.

J. Sun et al. Information Fusion 120 (2025) 103074
3.1.1. Linguistic representation of transactions
Numerical transaction data often obscures specific transaction in-

formation. To address this, we propose a linguistic representation of
transactions to elucidate their content.

Let = {𝑡1, 𝑡2,… , 𝑡𝑁} be the set of 𝑁 transactions associated with
a single account. Each transaction 𝑡𝑖 is characterized by a tuple:
𝑡𝑖 = (𝑣𝑖, 𝑑𝑖, 𝜏𝑖) (1)

where:

• 𝑣𝑖 is the transaction amount.
• 𝑑𝑖 ∈ {−1, 1} is the transaction direction, with −1 indicating an
inflow and 1 indicating an outflow.

• 𝜏𝑖 ∈ T is the timestamp of the transaction, where T is the set of
all possible timestamps.

We transform each numerical attribute into a linguistic token by
prepending a descriptive text indicator:
(𝑡𝑖) = {amount: 𝑣𝑖, direction: 𝑑𝑖, timestamp: 𝜏𝑖} (2)

However, raw Ethereum timestamps (e.g., 2024121214) lack in-
terpretability and may mislead models due to their large numerical
values. To address this, we capture the intervals between consecutive
transactions rather than using raw timestamps.

Let 𝜏𝑖 denote the timestamp of transaction 𝑡𝑖. We define the time
intervals as:
𝛥𝜏𝑖,𝑛 = 𝜏𝑖 − 𝜏𝑖−𝑛, for 𝑛 ∈ {1, 2, 3, 4, 5} (3)

where 𝛥𝜏𝑖,𝑛 represents the time difference between transaction 𝑡𝑖 and
its 𝑛th preceding transaction.

We incorporate the time differences from the 2nd to the 5th preced-
ing transactions into (𝑡𝑖). The enhanced representation ′(𝑡𝑖) is defined
as:
′(𝑡𝑖) = {amount: 𝑣𝑖, direction: 𝑑𝑖,

2-inter_time: 𝛥𝜏𝑖,2,
3-inter_time: 𝛥𝜏𝑖,3,
4-inter_time: 𝛥𝜏𝑖,4,
5-inter_time: 𝛥𝜏𝑖,5}

(4)

This enhanced representation captures transaction clustering at dif-
ferent time granularities. Each element in ′(𝑡𝑖) is treated as a transac-
tion word.

The 𝑁 transactions of an account form a series of transaction
sentences :
 = {′(𝑡1),′(𝑡2),… ,′(𝑡𝑁)} (5)

3.1.2. Transaction semantic embedding
We employ BERT-base [38] to extract semantic embeddings from

these transaction representations. We continue training BERT using our
domain-specific pre-training corpus, denoted as :
 =

⋃

𝑎∈
𝑎 (6)

where is the set of all accounts, and 𝑎 is the transaction sentences
for account 𝑎.

We use a masked language model (MLM) objective:

MLM = E𝑡∼

[

−
∑

𝑖∈
log𝑃 (𝑥𝑖|𝑡)

]

(7)

where is the set of masked token indices, 𝑡 is the masked version
of transaction sentence 𝑡, 𝑥𝑖 is the 𝑖th token in 𝑡, and 𝑃 (𝑥𝑖|𝑡) is the
probability of predicting the original token 𝑥𝑖 given the masked context.

After pre-training, for each token 𝑥𝑖 in a transaction sentence 𝑡,
BERT-base generates a semantic embedding vector:
𝐞𝑠𝑖 = BERT(𝑥𝑖|𝑡) ∈ R𝑑 (8)

where 𝑑 is the dimensionality of the embedding space.
4
Table 1
Key notation and description.
 Notations Descriptions
 Set of 𝑁 transactions for a single account
 𝑡𝑖 Transaction 𝑖, characterized by (𝑣𝑖 , 𝑑𝑖 , 𝜏𝑖)
 𝑣𝑖 Transaction amount in 𝑡𝑖
 𝑑𝑖 Transaction direction in 𝑡𝑖; −1 inflow, 1 outflow
 𝜏𝑖 Timestamp of transaction 𝑡𝑖
 𝛥𝜏𝑖,𝑛 Time difference of 𝑡𝑖 and 𝑡𝑖−𝑛
 (𝑡𝑖) Linguistic representation of transaction 𝑡𝑖
 ′(𝑡𝑖) Enhanced linguistic representation of transaction 𝑡𝑖
 Sequence of transaction sentences for an account
 Set of all accounts
 Corpus of all transaction sentences
 𝑤 = (𝑤 , 𝑤) TASG with word nodes and edges
 𝑤𝑖, 𝑤𝑗 Words in the vocabulary
 NPMI(𝑤𝑖 , 𝑤𝑗) NPMI between 𝑤𝑖 and 𝑤𝑗
 TF-IDF(𝑤𝑖 , 𝑑) TF-IDF score of word 𝑤𝑖 in sentence 𝑑
 𝜃 Predefined threshold for NPMI or TF-IDF
 𝐞𝑔𝑖 Similarity embedding of word 𝑤𝑖 from TASG
 𝐄𝑖 Concatenated embedding [𝐞𝑠𝑖 ; 𝐞𝑔𝑖]
 𝐐, 𝐊, 𝐕 Query, key, and value matrices in attention
 𝑑𝑘 Dimensionality of key vectors
 𝐙 Output from Multi-Head Attention Network (MAN)
 𝐇 Feature vector corresponding to the [CLS] token
 𝑎 = (𝑉𝑎 , 𝐸𝑎) Account Interaction Graph
 𝑉𝑎 Set of account nodes in AIG
 𝐸𝑎 Set of edges between accounts in AIG
 𝑤𝑖𝑗 Weight of edge between accounts 𝑖 and 𝑗
 𝐀 Adjacency matrix of AIG
 𝐗 Initial node features for GCN from MAN outputs
 𝐇(𝑙) Node features at layer 𝑙 of GCN
 �̂� Normalized adjacency matrix with self-loops
 𝜎(⋅) Activation function
 𝐙GCN Output of GCN after processing node embeddings
 𝐙MAN Prediction from MAN
 𝜆 Hyperparameter balancing MAN and GCN outputs
 Pred Final prediction after combining MAN and GCN
 𝑦𝑖 Ground-truth label for sample 𝑖
 Cross-entropy loss function

Fig. 3. The generation and combination of ethereum transaction semantic embedding
and similarity embedding.

3.2. Transaction attribute similarity graph

While pretrained language models can capture semantic features
from account transaction records, their embeddings rely solely on indi-
vidual account histories and lack sensitivity to anomalous terms within
transaction texts—critical information for distinguishing phishing ac-
counts. For instance, phishing accounts often execute large transactions
within short intervals, exhibiting similar semantic patterns in both
transaction amounts and temporal behavior. To address this limitation,
we propose the Transaction Attribute Similarity Graph (TASG), which
captures global transaction correlations across Ethereum data, offering
intuitive insights into anomalies.

J. Sun et al. Information Fusion 120 (2025) 103074
We generate a vocabulary from the tokenized transaction corpus.
Subsequently, we construct the TASG using two approaches: Nor-
malized Pointwise Mutual Information (NPMI) and Term Frequency-
Inverse Document Frequency (TF-IDF). Let TASG be denoted as 𝑤 =
(𝑤, 𝑤), where 𝑤 represents the set of nodes corresponding to words
in the vocabulary, and 𝑤 represents the set of edges connecting these
nodes. The presence of an edge between two nodes is determined by
their NPMI or TF-IDF value.

The NPMI [39] between two words 𝑤𝑖 and 𝑤𝑗 is calculated as
follows:

NPMI(𝑤𝑖, 𝑤𝑗) =
log 𝑝(𝑤𝑖 ,𝑤𝑗)

𝑝(𝑤𝑖)𝑝(𝑤𝑗)

− log 𝑝(𝑤𝑖, 𝑤𝑗)
(9)

where 𝑝(𝑤𝑖, 𝑤𝑗) is the probability of co-occurrence of 𝑤𝑖 and 𝑤𝑗 within
a given context window, and 𝑝(𝑤𝑖) and 𝑝(𝑤𝑗) are the individual proba-
bilities of 𝑤𝑖 and 𝑤𝑗 . In our approach, the window size is the length of
one transaction sentence, and we create an edge between two words if
their NPMI exceeds a predefined threshold 𝜃.

The TF-IDF [40] score of word 𝑤𝑖 in transaction sentence 𝑑 is
calculated as follows:

TF-IDF(𝑤𝑖, 𝑑) = TF(𝑤𝑖, 𝑑) × log
(

𝑁
|{𝑑′ ∈ 𝐷 ∶ 𝑤𝑖 ∈ 𝑑′}|

)

(10)

where TF(𝑤𝑖, 𝑑) is the term frequency of word 𝑤𝑖 in transaction sen-
tence 𝑑, 𝑁 is the total number of sentences in the corpus 𝐷, and
|{𝑑′ ∈ 𝐷 ∶ 𝑤𝑖 ∈ 𝑑′}| is the number of sentences containing 𝑤𝑖. In our
approach, we introduce additional sentence nodes in the vocabulary
graph to model a TF-IDF-based TASG 𝑤; the connectivity between
sentence nodes and word nodes depends on whether their TF-IDF values
exceed the predefined threshold 𝜃.

We then apply a Graph Convolutional Network (GCN) to encode
nodes in the TASG, obtaining global similarity embeddings 𝐞𝑔𝑖 for each
word 𝑤𝑖. Intuitively, NPMI can capture tokens with high co-occurrence
frequency in transaction sentences, while TF-IDF can reveal the token
in the transaction sentence that can best identify an account. These two
strategies provide fine-grained information supplements for clarifying
the semantics of account transactions from the perspectives of word
similarity and discriminability, respectively, alleviating the deficiency
of the semantic embedding obtained by language modeling that lacks
global information.

3.3. Semantic and similarity embedding fusion

Since the vocabulary used for generating the transaction sequence
semantic embeddings and constructing the vocabulary graph are both
derived from the same tokenizer, the words in each account’s transac-
tion sequence are a subset of the vocabulary graph [41]. As shown in
Fig. 3, we select the corresponding word nodes from the TASG based
on the input transaction sequence and concatenate the transaction sim-
ilarity embeddings generated by TASG with the semantic embeddings
generated by TLM.

For each token 𝑥𝑖 in the transaction sequence, we obtain its semantic
embedding 𝐞𝑠𝑖 from the TLM and its similarity embedding 𝐞𝑔𝑖 from the
TASG GCN encoder. We then concatenate them:
𝐄𝑖 = [𝐞𝑠𝑖 ; 𝐞

𝑔
𝑖] (11)

where [⋅; ⋅] denotes concatenation along the feature dimension.
We fuse the information from the two types of embeddings 𝐄𝑖 using

a deep Multi-Head Attention Network (MAN) that consists of 12 layers,
each with 12 attention heads. The computation for each attention head
is as follows:

Attention(𝐐,𝐊,𝐕) = softmax
(

𝐐𝐊⊤
√

𝑑𝑘

)

𝐕 (12)

where 𝐐, 𝐊, and 𝐕 are the query, key, and value matrices, respectively,
and 𝑑 is the dimensionality of the key vectors.
𝑘

5
The multi-head attention involves several independent attention
heads, each computing the scaled dot-product attention. Through these
attention mechanisms, in a 12-layer, 12-head self-attention encoder,
semantic embeddings and similarity embeddings interact layer by layer
to achieve fusion. Each word vector obtains a representation encoding
contextual information. The corresponding output is denoted as:
𝐙 = Concat(head1,head2,… ,headℎ)𝐖𝑂 (13)

where 𝐙 ∈ R𝐵×𝐿×𝐹 , 𝐵 is the batch size, 𝐿 is the sequence length, 𝐹
is the dimension of the multi-head attention hidden layer, ℎ is the
number of attention heads (here ℎ = 12), and 𝐖𝑂 is the learned
projection matrix that linearly transforms the concatenated outputs
from all attention heads into the final dimensionality required by the
model.

By extracting the hidden state 𝐇 ∈ R𝐵×𝐹 corresponding to the
‘‘[CLS]’’ token (the first token) from the final output of the encoder,
we obtain the global feature vector 𝐇 of the sequence and get the final
representation of the transaction sequence by the transaction language
model. This representation is applied to subsequent classification tasks.

3.4. Account interaction graph

We construct an Account Interaction Graph (AIG) to model trans-
action relationships between accounts and capture the topological in-
formation of transactions. We represent the AIG as a weighted graph
𝑎 = (𝑉𝑎, 𝐸𝑎), where 𝑉𝑎 is the set of account nodes in the transaction
network, with each node representing an individual account, and 𝐸𝑎
is the set of edges, where each edge (𝑖, 𝑗) represents that account 𝑖 has
transacted with account 𝑗. The weight of an edge 𝑤𝑖𝑗 represents the
number of transactions between account 𝑖 and account 𝑗.

The adjacency matrix of the graph is denoted as 𝐀 ∈ R𝑁𝑎×𝑁𝑎 , where
𝑁𝑎 = |𝑉𝑎| is the number of account nodes. The weight matrix 𝐖 ∈
R𝑁𝑎×𝑁𝑎 contains the transaction counts between pairs of nodes [42].

We initialize the account node features 𝐗 ∈ R𝑁𝑎×𝐹 using the
transaction sequence representations obtained from the TLM in the
previous section, where 𝐹 is the feature dimension.

The account nodes are iteratively updated using a GCN. The update
rule for layer 𝑙 + 1 is given by:

𝐇(𝑙+1) = 𝜎
(

�̂�𝐇(𝑙)𝐖(𝑙)
)

(14)

where:

• 𝐇(𝑙) ∈ R𝑁𝑎×𝐹 (𝑙) is the node feature matrix at layer 𝑙.
• �̂� = 𝐃− 1

2 (𝐀 + 𝐈)𝐃− 1
2 is the normalized adjacency matrix with

self-loops added (𝐈 is the identity matrix and 𝐃 is the degree
matrix).

• 𝐖(𝑙) ∈ R𝐹 (𝑙)×𝐹 (𝑙+1) is the trainable weight matrix for layer 𝑙.
• 𝜎(⋅) is a non-linear activation function, such as ReLU.

3.5. Joint training of MAN and AIG

We combine the Multi-Head Attention Network (MAN) and the
Account Interaction Graph (AIG) for joint model training.

First, we use the output 𝐇 from the MAN as the initial node
embeddings 𝐗 for the GCN on the AIG, The GCN processes 𝐗 and
outputs node representations 𝐙GCN:

𝐗 = 𝐇 (15)
𝐙GCN = GCN(𝐗,𝐀) (16)

We also obtain the prediction 𝐙MAN from the MAN by applying a
classification layer on 𝐇:
𝐙MAN = softmax(𝐖MAN𝐇 + 𝐛MAN) (17)

where 𝐖MAN and 𝐛MAN are the weights and biases of the classification
layer.

J. Sun et al.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

Information Fusion 120 (2025) 103074
Then, we linearly interpolate the predictions from the MAN and
GCN to obtain the final prediction:
Pred = 𝜆𝐙GCN + (1 − 𝜆)𝐙MAN (18)

where 𝜆 ∈ [0, 1] is a hyperparameter controlling the balance between
the two models’ contributions to the result. 𝜆 = 0 means that we use
only the MAN model, while 𝜆 = 1 means that we use only the GCN
model.
Algorithm 1: Process of TLMG4Eth Framework
Input: Account set -

Transaction data -
Labels -
Learning rate - 𝜂
Batch size - 𝐵
Threshold for TASG - 𝜃
Interpolation weight - 𝜆
Number of epochs - 𝐸

Output: Trained model parameters 𝛩
Function TLMG4Eth():

⊳ Initialize model parameters
𝛩 ← {𝛩TLM, 𝛩TASG, 𝛩MAN, 𝛩AIG, 𝛩MLP}
 ← BuildVocabulary()
𝑤 ← ConstructTASG(, 𝜃)
for epoch = 1 to 𝐸 do

for {(𝑎𝑖, 𝑦𝑖)}𝐵𝑖=1 ∈ MiniBatches(,) do
⊳ Extract and encode transaction features
for 𝑎𝑖 ∈ do

𝑎𝑖 ← GetTransactions(, 𝑎𝑖)
𝑎𝑖 ← Trans2Sentences(𝑎𝑖)
𝐄𝑠
𝑎𝑖
← EncodeSemantic(𝑎𝑖 ;𝛩TLM)

𝐄𝑔
𝑎𝑖 ← EncodeSimilarity(𝑎𝑖 ,𝑤;𝛩TASG)

𝐄𝑎𝑖 ← ConcatEmbedding(𝐄𝑠
𝑎𝑖
,𝐄𝑔

𝑎𝑖)
𝐡𝑎𝑖 ← FuseEmbed(𝐄𝑎𝑖 ;𝛩MAN)

end
⊳ Initialize AIG and farwad GNNs
batch𝑎 ← ConstructAIG({𝑎𝑖},)
𝐙GCN ← AIGForward(batch𝑎 , {𝐡𝑎𝑖};𝛩AIG)
𝐙MAN ← Predict({𝐡𝑎𝑖};𝛩MLP)
⊳ Combine predictions and compute loss
𝐙Pred ← 𝜆𝐙GCN + (1 − 𝜆)𝐙MAN
 ← LossFunction(𝐙Pred, {𝑦𝑖})
⊳ Update model parameters
𝛩 ← 𝛩 − 𝜂∇𝛩

end
end

return all parameters 𝛩

To reduce computational complexity and memory requirements, we
introduce a batch update method to achieve synchronous mini-batch
training for both the MAN and GCN. Specifically, we construct a dic-
tionary to track the embeddings of all accounts in both models. In each
iteration, we sample a mini-batch from phishing and normal accounts,
compute their semantic embeddings, and update the corresponding
node embeddings in the AIG through the dictionary.

To mitigate confounding biases, the model is fine-tuned to lever-
age shared representations for prediction. We jointly optimize both
MAN predictions and GCN predictions to enhance overall performance.
Specifically, we use the updated node embeddings to derive the GCN
output, and after performing prediction interpolation, we calculate the
cross-entropy loss for the current mini-batch. The loss function can be
expressed as:

 = − 1
𝐵

𝐵
∑

𝑖=1

[

𝑦𝑖 log(Pred𝑖) + (1 − 𝑦𝑖) log(1 − Pred𝑖)
]

(19)

where 𝐵 is the mini-batch size, 𝑦𝑖 is the ground-truth label for sample
𝑖 (1 for phishing account, 0 for normal account), and Pred𝑖 is the
predicted probability for sample 𝑖.
6
Table 2
Summary of three datasets.
 Dataset Nodes Edges Avg degree Phisher
 MulDiGraph 2,973,489 13,551,303 4.5574 1,165
 B4E 597,258 11,678,901 19.5542 3,220
 SPN 496,740 831,082 1.6730 5,619

During training, the transaction language model first initializes the
embeddings of the account nodes in the AIG. The GCN then updates
these node embeddings by aggregating information from neighboring
nodes, capturing topological structure features. The joint optimization
of the parameters of the MAN and GCN gradually enhances the comple-
mentary advantages of the language model and the graph model. The
final model demonstrates excellent performance in detecting Ethereum
phishing accounts.

4. Dataset review

As shown in Table 2, we utilized three datasets: MulDiGraph,1
B4E,2 and SPN. We process the dataset according to the methods in
Section 3.1, 3.2 and 3.4 to obtain account transaction text, similarity
information and transaction graph respectively.

4.1. MulDiGraph

This dataset is publicly available on the XBlock [43] platform
and is a widely used dataset that was released in December 2020. It
includes a large Ethereum transaction network obtained by performing
a two-hop Breadth-First Search (BFS) from known phishing nodes.
The dataset contains 2,973,489 nodes, 13,551,303 edges, and 1,165
phishing nodes, which contain basic transaction information such as
transaction amount and timestamps.

4.2. B4E

This dataset was collected via an Ethereum node using Geth [31].
It covers transactions from January 1, 2017, to May 1, 2022, in-
cluding 3,220 phishing accounts and 594,038 normal accounts. The
dataset contains 328,261 transactions involving phishing accounts and
1,350,640 involving normal accounts. It is divided into four groups:
phishing accounts, normal accounts, incoming transactions, and outgo-
ing transactions.

4.3. Our dataset SPN

Second order Phishing Network, we created this dataset using the
Etherscan API. Starting from the most recently identified all phishing
nodes, we performed a two-hop BFS to gather information on their
neighbors and extracted the first 100 transaction records for each
involved node [44]. This dataset contains trading information prior to
June 7, 2024, includes 5,619 phishing accounts and 491,121 normal
accounts, with a total of 831,082 transaction edges. Compared to other
datasets, SPN provides an up-to-date view of the Ethereum trading envi-
ronment, focusing on recent phishing activities and network dynamics
in a graph structure.

1 xblock.pro/#/dataset/13
2 https://github.com/git-disl/BERT4ETH

http://xblock.pro/#/dataset/13
https://github.com/git-disl/BERT4ETH

J. Sun et al. Information Fusion 120 (2025) 103074
Table 3
The performances with our method and baseline methods on three datasets, and B-Acc is a Balanced Accuracy.
 Method MulDiGraph B4E SPN

 Precision Recall F1 B-Acc Precision Recall F1 B-Acc Precision Recall F1 B-Acc
 Role2Vec 0.4688 0.6976 0.5608 0.6511 0.5748 0.7958 0.6673 0.7507 0.4521 0.7059 0.5512 0.6391
 Trans2Vec 0.7114 0.6944 0.7029 0.7768 0.2634 0.7043 0.3842 0.3598 0.3928 0.7381 0.5134 0.5838
 GCN 0.2960 0.7513 0.4247 0.4289 0.5515 0.7508 0.6359 0.7228 0.5046 0.4973 0.5009 0.6266
 GAT 0.2689 0.7917 0.4014 0.3577 0.4729 0.8348 0.6038 0.6848 0.5083 0.7720 0.6130 0.6993
 SAGE 0.3571 0.3299 0.3430 0.5164 0.4589 0.5826 0.5134 0.6196 0.4557 0.5817 0.5110 0.6172
 TSGN 0.6305 0.7148 0.6700 0.7526 0.6513 0.7954 0.7161 0.7912 0.6055 0.6793 0.6402 0.7290
 GrabPhisher 0.7639 0.8369 0.7987 0.8537 0.7251 0.6138 0.6648 0.7487 0.6736 0.7929 0.7283 0.8003
 BERT4ETH 0.4469 0.7344 0.5557 0.6400 0.7421 0.6125 0.6711 0.7530 0.7566 0.6713 0.7114 0.7817
 ZipZap 0.4312 0.7128 0.5429 0.6247 0.7356 0.6112 0.6676 0.7506 0.7496 0.6733 0.7094 0.7804
 Ours 0.8919 0.9167 0.9041 0.9305 0.8158 0.8087 0.8123 0.8587 0.7962 0.8339 0.8146 0.8636
 Improv. (%) 16.8 9.5 13.2 9.0 9.9 −2.6 9.62 8.5 11.8 5.2 11.8 7.9
5. Experience

In this section, we present the experimental results of TLMG4Eth, an
Ethereum phishing account detection model. We raised several research
questions that we wanted to explore and answered them through exper-
imental investigations, including comparison with common phishing
detection methods, the validity and necessity of each module, proving
the superior performance of our method in Ethereum phishing account
detection.

• RQ1: How well does TLMG4Eth based on transaction semantics and
transaction networks detect phishing scams compared to other base-
line phishing scam detection methods?

• RQ2: Does the introduction of similarity embedding from the trans-
action attribute similarity graph by applying graph convolution effec-
tively enhance the model?

• RQ3: How does the parameter 𝜆 that controls the weight of the lan-
guage model and GNN model in joint training affect the performance
of the model?

• RQ4: How does the combination of different GNN models and lan-
guage models affect model performance?

TLMG4Eth is compared against several baselines including graph
embedding methods (Role2Vec [45], Trans2Vec [25]), graph neural
networks (GCN [46], GAT [47], SAGEConv [48]), and a Transformer-
based method (BERT4ETH [31]). For practical considerations, we limit
our analysis to the 100 most recent transactions per account. Our model
configuration employs the BERT-base architecture as the language
model, while both the transaction attribute similarity graph (TASG)
and the account interaction graph (AIG) utilize two GCN layers. The
joint training process is conducted with a batch sampling size of 64
and a learning rate of 1e−5. Unless otherwise specified, the trade-off
parameter (𝜆) for joint training of TLM and AIG is set to 0.7. The
TASG is constructed using TF-IDF scores, with an edge threshold of TF-
IDF ≥ 0.2 to establish link relationships between nodes. The training
process lasted for 20 epochs, taking approximately 3.5 h to complete.
All training and inference experiments were conducted on an RTX
3090 with 24 GB of memory. For baseline methods, we adopt the
original parameter settings for Trans2Vec and BERT4ETH as reported in
their respective publications, while other baselines retain their default
configurations without modifications.

5.1. Comparison with baselines (RQ1)

In this section, we present a comparative analysis of our proposed
TLMG4Eth model with nine baseline methods. Table 3 and Fig. 4
summarizes the experimental results across the three datasets. While
GrabPhisher achieves the highest F1 scores on MulDiGraph (0.7987)
and SPN (0.7283), TSGN demonstrates the best baseline performance
on B4E (0.7161). Nevertheless, TLMG4Eth consistently outperforms
these top baselines on all three datasets, improving F1 scores by ap-
proximately 13.2%, 9.62%, and 11.8% on MulDiGraph, B4E, and SPN,
7
respectively. TLMG4Eth also boosts Balanced Accuracy by 9.0%, 8.5%,
and 7.9% over the strongest baselines in each dataset. The slight
decrease in B4E recall (−2.61%) is offset by significant precision gains
(7.37%), resulting in a net improvement in F1-score (9.62%). These
substantial improvements highlight the efficacy of combining transac-
tion language modeling with graph-based learning for phishing account
detection.

We attribute these performance gains to two main factors: (i) By
processing and extracting semantic features from transaction records,
the language model component effectively captures subtle patterns
of abnormal behaviors exhibited by phishing accounts, distinguishing
them from legitimate ones. (ii) TLMG4Eth integrates the strengths of
a language model and a graph neural network, enabling the model
to leverage both semantic and structural information. This integra-
tion yields more expressive account representations, thereby enhancing
classification accuracy.

It is worth noting that TLMG4Eth achieves a slightly larger improve-
ment on MuDiGraph than on the other two datasets. We speculate that
this is due to the data collection strategy for MuDiGraph (and partially
for SPN), which employs breadth-first search expansions from phishing
nodes, yielding more densely connected local transaction subgraphs.
Such connectivity captures a richer set of topological relationships,
enabling the model to more effectively leverage global structural cues.

Among the baseline methods, graph embedding-based algorithms
(e.g., Role2Vec, Trans2Vec) exhibit relatively high recall but suffer
from lower precision, suggesting a tendency to over-identify phishing
nodes without sufficient discrimination for normal nodes. This overem-
phasis leads to elevated false positives. Additionally, these methods
primarily focus on network structure, underutilizing intrinsic transac-
tion attributes that can be especially significant in more structurally
complex datasets like B4E.

Graph neural network (GNN)-based models also have constraints,
particularly in how node features propagate through graph convo-
lutions. As neighborhood aggregation deepens, nodes may converge
toward the majority class (non-phishing), making phishing nodes more
difficult to distinguish [49,50]. By contrast, our TLMG4Eth framework
supplements graph convolution with a transaction language model,
continuously refining node representations with semantic cues. This
design lessens the risk that phishing nodes become indistinguishable
as graph convolution layers increase.

Although the Transformer-based BERT4ETH and ZipZap baseline is
competitive, especially in sequential transaction analysis, its limited ca-
pacity to encode structural topological information constrains its ability
to capture higher-level relational patterns among accounts. Further-
more, BERT4ETH’s numerical treatment of transaction features does
not incorporate the nuanced semantic perspective on account behav-
ior, potentially overlooking critical indicators of phishing activity. In
contrast, TLMG4Eth’s integrated semantic and structural representation
allows it to detect subtle anomalies more robustly.

While TSGN and GrabPhisher demonstrate strong baseline perfor-
mance, they exhibit key limitations in phishing detection. TSGN, which

J. Sun et al. Information Fusion 120 (2025) 103074
Fig. 4. ROC curves of the baseline model and TLMG4Eth on different datasets.
Fig. 5. Performance of various TASG construction methods under varying threshold 𝜃.
Table 4
Performance comparison of TLM combined with different versions of TASG versus TLM alone.
 Enhancer MulDiGraph B4E SPN

 Precision Recall F1 B-Acc Precision Recall F1 B-Acc Precision Recall F1 B-Acc
 w/o 0.8776 0.8731 0.8753 0.9061 0.7807 0.7850 0.7825 0.8374 0.7902 0.7879 0.7911 0.8417
 NPMI-TFIDF 0.8953 0.8680 0.8814 0.9086 0.8053 0.7913 0.7982 0.8478 0.7913 0.8182 0.8045 0.8551
 Improv. (%) 1.77 −0.51 0.61 0.25 2.46 0.63 1.57 1.04 0.11 3.03 1.34 1.34
 NPMI 0.8784 0.9028 0.8904 0.9202 0.7815 0.8086 0.7949 0.8478 0.7975 0.8289 0.8129 0.8618
 Improv. (%) 0.08 2.97 1.51 1.40 0.08 2.36 1.24 1.04 0.73 4.10 2.18 2.01
 TF-IDF 0.8919 0.9167 0.9041 0.9306 0.8158 0.8087 0.8123 0.8587 0.7962 0.8339 0.8146 0.8636
 Improv. (%) 1.43 4.36 2.88 2.45 3.51 2.37 2.98 2.13 0.60 4.60 2.35 2.19
relies on static graph motifs, performs well on B4E (F1 = 0.7161)
but struggles against adaptive phishing tactics that mimic legitimate
transaction structures. Conversely, GrabPhisher excels on MulDiGraph
(F1 = 0.7987) but falters on sparser datasets like B4E (F1 = 0.6648),
where its dependence on dense phishing clusters limits its effectiveness.
In contrast, TLMG4Eth consistently outperforms both models by inte-
grating semantic and structural signals, ensuring more robust phishing
detection across diverse datasets.

5.2. Ablation study of attribute similarity graph (RQ2)

When modeling the transaction semantics of an account, the basic
BERT model can only consider the transaction sequence information
of the input single account, and does not consider the semantic infor-
mation of other accounts. However, this global semantic information is
crucial to gain insight into abnormal transactions and enhance the gen-
eralization ability of the model. Therefore, we introduce the transaction
attribute similarity graph(TASG) into BERT to enhance the global
awareness of the language model. In this section, we further explore
the impact of the key component transaction attribute similarity graph
in TLMG4Eth on the prediction performance of the model and conduct
ablation experiments on it. We conduct experiments on three datasets
respectively. The experimental results are presented in Fig. 5 and Table
8
4. NPMI represents that we use the normalized pointwise mutual infor-
mation to construct the TASG, and concatenate the features obtained
by graph convolution with the semantic features extracted by BERT
for deep Multi-Head Attention Network learning. TF-IDF means we
use term frequency-inverse document frequency to build TASG; NPMI-
TFIDF means that we used both NPMI and TF-IDF composition; The
notation ‘‘w/o’’ means that we do not introduce transaction attribute
similarity information into the language model and only use pure BERT
to extract features. These experiments are all done under the trade-off
parameter 𝜆 = 0.7 and jointly training the model as GCN using edge
features.

Overall, regardless of the method employed, the introduction of
transaction attribute similarity graphs improved model performance.
Notably, when using different methods to construct similar graphs,
a lower threshold theta value between 0 to 0.4 will result in better
performance of the model. This is because higher theta filters out
most of the mutual information of words, reducing the structure of the
vocabulary graph, making it difficult to obtain high-quality topological
and similarity features through convolution of the vocabulary graph.

The model that incorporating the similarity information of trans-
action attributes extracted by TF-IDF features achieves the most sig-
nificant improvement. Compared with BERT without introducing any
similarity information, it improves the F1 Scores by about 2.88%,

J. Sun et al. Information Fusion 120 (2025) 103074
Table 5
Effect of varying trade-off parameter 𝜆 between TLM and AIG on model.
 𝜆 MulDiGraph B4E SPN

 Precision Recall F1 B-Acc Precision Recall F1 B-Acc Precision Recall F1 B-Acc
 0 0.8918 0.8782 0.8849 0.9125 0.7648 0.8003 0.7820 0.8386 0.7856 0.8103 0.7972 0.8499
 0.1 0.8788 0.8832 0.8810 0.9111 0.7741 0.8072 0.7903 0.8447 0.7949 0.8142 0.8040 0.8546
 0.2 0.8964 0.8782 0.8872 0.9137 0.7963 0.7822 0.7892 0.8411 0.8174 0.7992 0.8082 0.8550
 0.3 0.9014 0.8889 0.8951 0.9201 0.7716 0.8163 0.7933 0.8477 0.7923 0.8333 0.8123 0.8620
 0.4 0.9000 0.8750 0.8873 0.9132 0.7702 0.8134 0.7912 0.8460 0.7910 0.8304 0.8102 0.8603
 0.5 0.8974 0.8883 0.8929 0.9188 0.7875 0.7885 0.7878 0.8411 0.8127 0.8055 0.8091 0.8563
 0.6 0.9028 0.9028 0.9028 0.9271 0.7445 0.8259 0.7830 0.8421 0.7693 0.8429 0.8044 0.8582
 0.7 0.8919 0.9167 0.9041 0.9306 0.7824 0.7947 0.7885 0.8421 0.8033 0.8117 0.8075 0.8562
 0.8 0.8904 0.9028 0.8966 0.9236 0.7817 0.8086 0.7949 0.8478 0.7821 0.8491 0.8142 0.8654
 0.9 0.8767 0.8889 0.8828 0.9132 0.7676 0.8026 0.7847 0.8406 0.7712 0.8397 0.8040 0.8576
 1 0.3172 0.8194 0.4574 0.4687 0.5742 0.7477 0.6495 0.7352 0.5742 0.7477 0.6495 0.7352
2.98% and 2.35% in the MulDiGraph, B4E and SPN, respectively. The
B-Acc index is improved by about 2.45%, 2.13% and 2.19%, respec-
tively. The other two methods NPMI and NPMI-TFIDF also have varying
degrees of improvement compared with only using BERT, which shows
that our method of integrating transaction attribute similarity features
into the semantic features extracted by the language model effectively
enhances the detection ability of the model.

One possible reason why TF-IDF improves the model more than
NPMI and NPMI-TFIDF is that: TF-IDF is commonly used in NLP to
measure the importance of terms in a document [51]. If a term appears
many times in a document, but not many times in other documents,
then this term is important to this document and conveys the key in-
formation of this document [52]. In the Ethereum transaction scenario,
phishing accounts and their transaction records appear frequently in
phishing scams, but account for a small proportion of the total transac-
tion information, so the TF-IDF value of the words involved in phishing
in the transaction language will be higher, that is, these words can
express key information of phishing accounts, which provides key
global features for the language model. Thus, the global perception
ability of the model is greatly improved.

NPMI-based methods focus on co-occurrence probabilities. NPMI
can be understood as a pre-clustering of corpus information, where
strongly correlated words are grouped together. If two words have
a higher probability of co-occurrence in the trading language, they
are more closely related and have a higher degree of association. In
the scenario of normal account transactions in Ethereum, most of the
transaction records structure are similar, and NPMI will pay more
attention to the transaction semantics of normal accounts. Therefore,
compared with TF-IDF information, the global similarity features of
phising accounts provided by NPMI are limited.

5.3. Impact of the trade-off parameter (RQ3)

In this section, we discuss in detail the effect of the trade-off
parameter 𝜆 of the language model TLM and GNNs model on the
performance of the model in joint training. These experiments were
done under TLM using NPMI as the similarity feature and GCN-e as
the joint training model. When 𝜆 is close to 0, the model will be biased
toward the prediction results of the language model to optimize the
model. However, when 𝜆 is close to 1, the model will be biased toward
the decision update model parameters of the GNNs model based on
semantic embedding. We have proved through extensive experiments
that the optimal trade-off parameters of the model on different datasets
are different, which may be caused by the different distribution of the
datasets. However, in general, the best performance of TLMG4Eth on
each dataset occurs at high values of 𝜆, that is, when the contribution
of GNNs model is relatively large, TLMG4Eth has better classification
performance.

The specific experimental results are shown in Table 5. On the
MuDiGraph, B4E and SPN datasets, the F1 Scores and B-Acc of the
9
model is the highest when 𝜆 is equal to 0.7, 0.8 and 0.8, respectively.
The highest F1-Score was 90.41%, 79.49% and 81.42%. The highest
B-Acc was 93.06%, 84.78% and 86.54%. Across all three datasets, the
results of joint training outperform the cases where 𝜆 = 0 or 1. This
indicates that joint training is more effective than using either approach
independently. Taking the results on the MuDiGraph dataset as an
example, when 𝜆 = 0.7, the F1 Scores and B-Acc of the model are
improved by about 1.92% and 1.81% respectively compared with 𝜆 = 0,
which shows that the introduction of the GNNs model for joint training
effectively improves the classification performance of the model.

Although the model performs better when the trade-off parameter
𝜆 is relatively high, this does not mean that increasing the weight
of the GNNs model infinitely or even relying on the GNNs model to
make the decision will lead to better performance. We compare the
training loss curves of the model under different 𝜆. Fig. 6 shows that
when 𝜆 is set to 0.9, compared with other 𝜆 values, the training loss
of the model converges to a higher value. When 𝜆 is set to 1, the
loss hardly decreases as training progresses, and the performance of
the model degrades substantially, even on par with the performance
of GCN in the baseline method. One possible reason is that when
𝜆 is too high, the decision results dominated by GNNs have limited
reference significance to TLM, and TLM cannot optimize the extraction
of transaction semantic features in joint training. Moreover, TLM still
updates the embeddings of intermediate transaction graph nodes with
each round of training, which makes GNNs continue to receive lower-
quality semantic embeddings, ultimately making the overall model
difficult to optimize. Our research proves that an appropriately high
𝜆 value can well integrate the complementary advantages of language
model and graph model in joint training, thus obtaining excellent
performance.

5.4. Different GNN model combination (RQ4)

In this section, we explore the performance differences of various
graph representation learning algorithms applied to AIG. We evalu-
ate four graph learning algorithms, each jointly trained with TLM,
including: Graph Convolutional Network (GCN) without edge features,
GCN with edge features (GCNe), Graph Attention Network (GAT), and
GraphSAGE convolution (SAGEconv). For fair comparison, we set the
number of conv layers to 2 for all GNNs, the number of heads for GAT
to 8, and the aggregation operation of mean for SAGEconv. In addition,
we adopt TF-IDF similarity graph enhancement of transaction attributes
for TLM, and keep the rest Settings as default, and train for 50 epochs
on three different datasets respectively.

The experimental results, presented in Table 6, demonstrate that
GCNe, which incorporates edge features, achieves the best perfor-
mance on the three datasets. Compared to the standalone multihead
attention network(MAN), the MAN + GCNe model shows significant
improvements across all three datasets. Specifically, it enhances the
F1 Scores by approximately 2.37%, 2.00%, and 1.28%, while the B-
Acc metric improves by about 2.06%, 1.56%, and 1.17% respectively.

J. Sun et al. Information Fusion 120 (2025) 103074
Fig. 6. Training Loss vs Epoch on MulDiGraph, B4E and SPN datasets with different trade-off parameter 𝜆.
Table 6
Performance of TLM combined with various GNN.
 Combination MulDiGraph B4E SPN

 Precision Recall F1 B-Acc Precision Recall F1 B-Acc Precision Recall F1 B-Acc
 TLM Only 0.8827 0.8782 0.8804 0.9099 0.8002 0.7841 0.7923 0.8431 0.7980 0.8056 0.8018 0.8518
 TLM+GCN 0.8667 0.9028 0.8844 0.9167 0.8074 0.7974 0.8027 0.8511 0.7905 0.8128 0.8015 0.8526
 Improv. (%) −1.60 2.46 0.40 0.68 0.72 1.33 1.04 0.80 −0.75 0.72 −0.03 0.07
 TLM+GAT 0.8767 0.8889 0.8828 0.9132 0.8086 0.7818 0.7949 0.8446 0.8107 0.7984 0.8045 0.8526
 Improv. (%) −0.60 1.07 0.24 0.33 0.84 −0.23 0.26 0.15 1.27 −0.72 0.27 0.08
 TLM+SAGE 0.8866 0.8731 0.8798 0.9086 0.8032 0.8037 0.8032 0.8526 0.7813 0.8182 0.7993 0.8518
 Improv. (%) 0.39 −0.51 −0.06 −0.13 0.30 1.96 1.09 0.95 −1.68 1.26 −0.25 0.00
 TLM+GCNe 0.8919 0.9167 0.9041 0.9306 0.8158 0.8087 0.8123 0.8587 0.7962 0.8339 0.8146 0.8636
 Improv. (%) 0.92 3.85 2.37 2.06 1.56 2.46 2.00 1.56 −0.19 2.83 1.28 1.17
This together with the experiment in RQ3 proves that our proposed
TLM and AIG joint training method effectively improves the phishing
account detection performance of the model. Notably, the SAGEconv
and GCN models exhibit a considerable performance gap compared
to GCNe in joint training, even diminishing the effectiveness of MAN.
This may be due to the failure of the model to model the relationship
between nodes and their neighbors, and the graph convolution opera-
tion does not assign different weights according to the importance of
nodes, so that nodes will aggregate useless or even interfere with the
features of account classification, and ultimately affect the classification
performance.

Although GAT captures the relationship and feature relationship be-
tween nodes and their neighbors through the self-attention mechanism,
it only relies on the connection relationship between nodes to calculate
the self-attention coefficient to assign weights to neighbors, rather than
explicitly using edge features [53,54]. In the context of the Ethereum
transaction network being a sparse network, this feature that GAT relies
on node connectivity makes it more difficult to accurately capture the
connections between nodes. In contrast, GCNe using edge features ex-
plicitly models the weights between nodes and their neighbors based on
Ethereum transaction records, uses edge features to aggregate messages
from limited neighbors in sparse graphs, and successfully combines
transaction semantic information and network topology information,
thereby achieving excellent performance.

6. Limitation

While TLMG4Eth demonstrates significant improvements in Ethere-
um fraud detection, several limitations persist that should be acknowl-
edged and addressed in future research:

Data Temporal Coverage: The SPN dataset used focuses on phish-
ing patterns up to June 2024, limiting the model’s adaptability to
emerging fraud tactics. A more longitudinal dataset could improve
generalizability and robustness.

Computational Complexity: The integration of 12-layer Trans-
formers with GCNs introduces significant computational overhead, par-
ticularly for memory-intensive attention mechanisms. This poses scala-
bility challenges for real-time detection, especially given the large scale
10
of Ethereum’s transaction network. Optimization strategies are needed
for large-scale deployment.

Semantic Drift Risk: The static pre-training of the TLM model may
lead to outdated semantics as phishing tactics evolve. Without dynamic
learning to adapt to new tactics, the model may struggle to detect novel
fraud types over time.

Multi-chain Generalization: Our approach is tested only on Ethere-
um, limiting its applicability to other blockchains, such as Bitcoin.
Future work could explore methods to generalize the model across
different blockchain structures.

7. Conclusion

In this paper, we introduced TLMG4Eth, a novel approach that
integrates transaction language models with graph-based methods to
capture semantic, similarity, and structural features of transaction data
in Ethereum. Our work represents the first attempt to utilize language
models to address the issue of unclear transaction semantics, and
we pioneered the modeling of transaction similarity. After using an
attention network to fuse semantic and similarity information, we
proposed the construction of an account interaction graph to capture
the structural information of the account transaction network. Fur-
thermore, we developed a method for jointly training the attention
network and the account structure graph to integrate information from
all stages. Our approach has demonstrated significant improvements,
achieving performance gains of approximately 10% or more across
three datasets compared to the current state-of-the-art methods. These
empirical results provide strong evidence for the effectiveness of our
proposed methodology, highlighting the potential of combining linguis-
tic, semantic, and structural analysis in blockchain analytics and fraud
detection. As part of interesting future work, we plan to explore a wider
range of transaction semantic language models, improve pre-training
objectives, and study more effective fusion networks for fraud detection
tasks on other blockchains.

J. Sun et al. Information Fusion 120 (2025) 103074
CRediT authorship contribution statement

Jianguo Sun: Project administration, Methodology, Investigation.
Yifan Jia: Writing – original draft, Software, Data curation. Yanbin
Wang: Supervision, Methodology. Ye Tian: Formal analysis, Concep-
tualization. Sheng Zhang: Visualization, Methodology.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

Our research is supported by the Natural Science Foundation of
China, Grant No. 62302358.

Data availability

The code and data for our research are available at: https://github.
com/lincozz/TLmGNN.

References

[1] Z. Zheng, S. Xie, H.-N. Dai, X. Chen, H. Wang, Blockchain challenges and
opportunities: A survey, Int. J. Web Grid Serv. 14 (4) (2018) 352–375.

[2] Z. Zheng, J. Su, J. Chen, D. Lo, Z. Zhong, M. Ye, Dappscan: building large-scale
datasets for smart contract weaknesses in dapp projects, IEEE Trans. Softw. Eng.
(2024).

[3] G. Wood, et al., Ethereum: A secure decentralised generalised transaction ledger,
2014, pp. 1–32, Ethereum project yellow paper 151.

[4] S. Wu, D. Wang, J. He, Y. Zhou, L. Wu, X. Yuan, Q. He, K. Ren, Defiranger:
Detecting price manipulation attacks on defi applications, 2021, arXiv preprint
arXiv:2104.15068.

[5] D. Wang, S. Wu, Z. Lin, L. Wu, X. Yuan, Y. Zhou, H. Wang, K. Ren, Towards
a first step to understand flash loan and its applications in defi ecosystem, in:
Proceedings of the Ninth International Workshop on Security in Blockchain and
Cloud Computing, 2021, pp. 23–28.

[6] S. Werner, D. Perez, L. Gudgeon, A. Klages-Mundt, D. Harz, W. Knottenbelt,
Sok: Decentralized finance (defi), in: Proceedings of the 4th ACM Conference on
Advances in Financial Technologies, 2022, pp. 30–46.

[7] L. Zhou, K. Qin, A. Cully, B. Livshits, A. Gervais, On the just-in-time discovery
of profit-generating transactions in defi protocols, in: 2021 IEEE Symposium on
Security and Privacy, SP, IEEE, 2021, pp. 919–936.

[8] S. Li, G. Gou, C. Liu, G. Xiong, Z. Li, J. Xiao, X. Xing, TGC: Transaction graph
contrast network for ethereum phishing scam detection, in: Proceedings of the
39th Annual Computer Security Applications Conference, 2023, pp. 352–365.

[9] R. Kaur, D. Gabrijelčič, T. Klobučar, Artificial intelligence for cybersecurity:
Literature review and future research directions, Inf. Fusion 97 (2023) 101804.

[10] Chainalysis, 2023 crypto crime trends: Illicit cryptocurrency volumes reach all-
time highs amid surge in sanctions designations and hacking, 2023, https://
www.chainalysis.com/blog/2023-crypto-crime-report-introduction/. (Accessed 1
December 2023).

[11] A. Vaswani, Attention is all you need, 2017, arXiv preprint arXiv:1706.03762.
[12] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, M. Sun, Graph

neural networks: A review of methods and applications, AI Open 1 (2020) 57–81.
[13] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, S.Y. Philip, A comprehensive survey

on graph neural networks, IEEE Trans. Neural Netw. Learn. Syst. 32 (1) (2020)
4–24.

[14] K. Xu, W. Hu, J. Leskovec, S. Jegelka, How powerful are graph neural
networks? 2018, arXiv preprint arXiv:1810.00826.

[15] R. Nogueira, Z. Jiang, J. Lin, Document ranking with a pretrained
sequence-to-sequence model, 2020, arXiv preprint arXiv:2003.06713.

[16] Z. Tüske, G. Saon, K. Audhkhasi, B. Kingsbury, Single headed attention based
sequence-to-sequence model for state-of-the-art results on switchboard, 2020,
arXiv preprint arXiv:2001.07263.

[17] A. Cohan, I. Beltagy, D. King, B. Dalvi, D.S. Weld, Pretrained language models
for sequential sentence classification, 2019, arXiv preprint arXiv:1909.04054.

[18] C. Zhang, The analysis of the risks and improvements of ERC20 tokens,
Highlights Sci. Eng. Technol. 39 (2023) 1093–1097.

[19] L. Zhou, K. Qin, C.F. Torres, D.V. Le, A. Gervais, High-frequency trading on
decentralized on-chain exchanges, in: 2021 IEEE Symposium on Security and
Privacy, SP, IEEE, 2021, pp. 428–445.
11
[20] Z. Li, J. Li, Z. He, X. Luo, T. Wang, X. Ni, W. Yang, X. Chen, T. Chen,
Demystifying defi mev activities in flashbots bundle, in: Proceedings of the 2023
ACM SIGSAC Conference on Computer and Communications Security, 2023, pp.
165–179.

[21] K. Qin, L. Zhou, A. Gervais, Quantifying blockchain extractable value: How dark
is the forest? in: 2022 IEEE Symposium on Security and Privacy, SP, IEEE, 2022,
pp. 198–214.

[22] A. Grover, J. Leskovec, node2vec: Scalable feature learning for networks, in:
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2016, pp. 855–864.

[23] R. Tan, Q. Tan, P. Zhang, Z. Li, Graph neural network for ethereum fraud
detection, in: 2021 IEEE International Conference on Big Knowledge, ICBK, 2021,
pp. 78–85, http://dx.doi.org/10.1109/ICKG52313.2021.00020.

[24] Q. Yuan, B. Huang, J. Zhang, J. Wu, H. Zhang, X. Zhang, Detecting phishing
scams on ethereum based on transaction records, in: 2020 IEEE International
Symposium on Circuits and Systems, ISCAS, 2020, pp. 1–5, http://dx.doi.org/
10.1109/ISCAS45731.2020.9180815.

[25] J. Wu, Q. Yuan, D. Lin, W. You, W. Chen, C. Chen, Z. Zheng, Who are the
phishers? phishing scam detection on ethereum via network embedding, IEEE
Trans. Syst. Man, Cybern.: Syst. 52 (2) (2020) 1156–1166.

[26] B. Perozzi, R. Al-Rfou, S. Skiena, Deepwalk: Online learning of social represen-
tations, in: Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2014, pp. 701–710.

[27] L. Wang, M. Xu, H. Cheng, Phishing scams detection via temporal graph attention
network in ethereum, Inf. Process. Manage. 60 (4) (2023) 103412.

[28] X. Zhou, W. Yang, X. Tian, Detecting phishing accounts on ethereum based on
transaction records and EGAT, Electronics 12 (4) (2023) 993.

[29] S. Li, R. Wang, H. Wu, S. Zhong, F. Xu, SIEGE: Self-supervised incremental deep
graph learning for ethereum phishing scam detection, in: Proceedings of the 31st
ACM International Conference on Multimedia, 2023, pp. 8881–8890.

[30] C. Wu, J. Chen, Z. Zhao, K. He, G. Xu, Y. Wu, H. Wang, H. Li, Y. Liu, Y.
Xiang, Tokenscout: Early detection of ethereum scam tokens via temporal graph
learning, in: Proceedings of the 2024 on ACM SIGSAC Conference on Computer
and Communications Security, 2024, pp. 956–970.

[31] S. Hu, Z. Zhang, B. Luo, S. Lu, B. He, L. Liu, Bert4eth: A pre-trained transformer
for ethereum fraud detection, in: Proceedings of the ACM Web Conference 2023,
2023, pp. 2189–2197.

[32] S. Hu, T. Huang, K.-H. Chow, W. Wei, Y. Wu, L. Liu, ZipZap: Efficient training of
language models for large-scale fraud detection on blockchain, in: Proceedings
of the ACM on Web Conference 2024, WWW ’24, Association for Computing
Machinery, New York, NY, USA, 2024, pp. 2807–2816, http://dx.doi.org/10.
1145/3589334.3645352.

[33] J. Wang, P. Chen, X. Xu, J. Wu, M. Shen, Q. Xuan, X. Yang, Tsgn: Transaction
subgraph networks assisting phishing detection in ethereum, 2022, arXiv preprint
arXiv:2208.12938.

[34] S. Li, G. Gou, C. Liu, C. Hou, Z. Li, G. Xiong, TTAGN: Temporal transaction ag-
gregation graph network for ethereum phishing scams detection, in: Proceedings
of the ACM Web Conference 2022, 2022, pp. 661–669.

[35] A.Q. Md, S.S.S. Narayanan, H. Sabireen, A.K. Sivaraman, K.F. Tee, A novel
approach to detect fraud in Ethereum transactions using stacking, Expert Syst.
40 (7) (2023) e13255.

[36] S. Dutta, A. Sharma, J. Rajgor, Ethereum fraud prevention: A supervised
learning approach for fraudulent account recognition, in: 2024 1st International
Conference on Trends in Engineering Systems and Technologies, ICTEST, IEEE,
2024, pp. 1–8.

[37] J. Zhang, H. Sui, X. Sun, C. Ge, L. Zhou, W. Susilo, GrabPhisher: Phishing scams
detection in ethereum via temporally evolving GNNs, IEEE Trans. Serv. Comput.
(2024).

[38] J. Devlin, Bert: Pre-training of deep bidirectional transformers for language
understanding, 2018, arXiv preprint arXiv:1810.04805.

[39] C.E. Shannon, A mathematical theory of communication, Bell Syst. Tech. J. 27
(3) (1948) 379–423.

[40] J. Ramos, et al., Using tf-idf to determine word relevance in document queries,
in: Proceedings of the First Instructional Conference on Machine Learning, 242,
(1) 2003, pp. 29–48, Citeseer.

[41] Z. Lu, P. Du, J.-Y. Nie, VGCN-BERT: augmenting BERT with graph embedding
for text classification, in: Advances in Information Retrieval: 42nd European
Conference on IR Research, ECIR 2020, Lisbon, Portugal, April 14–17, 2020,
Proceedings, Part I 42, Springer, 2020, pp. 369–382.

[42] S. Zhang, H. Tong, J. Xu, R. Maciejewski, Graph convolutional networks: a
comprehensive review, Comput. Soc. Netw. 6 (1) (2019) 1–23.

[43] L. Chen, J. Peng, Y. Liu, J. Li, F. Xie, Z. Zheng, XBLOCK Blockchain
Datasets: InPlusLab ethereum phishing detection datasets, 2019, http://xblock.
pro/ethereum/.

[44] P. Zheng, Z. Zheng, J. Wu, H.-N. Dai, Xblock-eth: Extracting and exploring
blockchain data from ethereum, IEEE Open J. Comput. Soc. 1 (2020) 95–106.

[45] N.K. Ahmed, R.A. Rossi, J.B. Lee, T.L. Willke, R. Zhou, X. Kong, H. Eldardiry,
role2vec: Role-based network embeddings, Proc. DLG KDD (2019) 1–7.

https://github.com/lincozz/TLmGNN
https://github.com/lincozz/TLmGNN
https://github.com/lincozz/TLmGNN
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb1
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb1
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb1
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb2
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb2
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb2
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb2
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb2
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb3
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb3
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb3
http://arxiv.org/abs/2104.15068
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb5
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb5
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb5
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb5
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb5
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb5
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb5
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb6
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb6
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb6
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb6
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb6
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb7
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb7
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb7
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb7
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb7
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb8
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb8
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb8
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb8
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb8
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb9
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb9
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb9
https://www.chainalysis.com/blog/2023-crypto-crime-report-introduction/
https://www.chainalysis.com/blog/2023-crypto-crime-report-introduction/
https://www.chainalysis.com/blog/2023-crypto-crime-report-introduction/
http://arxiv.org/abs/1706.03762
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb12
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb12
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb12
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb13
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb13
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb13
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb13
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb13
http://arxiv.org/abs/1810.00826
http://arxiv.org/abs/2003.06713
http://arxiv.org/abs/2001.07263
http://arxiv.org/abs/1909.04054
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb18
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb18
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb18
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb19
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb19
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb19
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb19
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb19
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb20
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb20
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb20
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb20
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb20
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb20
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb20
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb21
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb21
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb21
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb21
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb21
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb22
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb22
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb22
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb22
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb22
http://dx.doi.org/10.1109/ICKG52313.2021.00020
http://dx.doi.org/10.1109/ISCAS45731.2020.9180815
http://dx.doi.org/10.1109/ISCAS45731.2020.9180815
http://dx.doi.org/10.1109/ISCAS45731.2020.9180815
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb25
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb25
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb25
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb25
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb25
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb26
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb26
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb26
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb26
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb26
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb27
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb27
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb27
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb28
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb28
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb28
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb29
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb29
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb29
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb29
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb29
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb30
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb30
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb30
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb30
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb30
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb30
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb30
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb31
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb31
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb31
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb31
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb31
http://dx.doi.org/10.1145/3589334.3645352
http://dx.doi.org/10.1145/3589334.3645352
http://dx.doi.org/10.1145/3589334.3645352
http://arxiv.org/abs/2208.12938
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb34
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb34
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb34
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb34
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb34
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb35
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb35
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb35
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb35
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb35
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb36
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb36
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb36
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb36
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb36
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb36
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb36
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb37
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb37
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb37
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb37
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb37
http://arxiv.org/abs/1810.04805
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb39
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb39
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb39
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb40
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb40
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb40
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb40
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb40
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb41
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb41
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb41
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb41
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb41
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb41
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb41
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb42
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb42
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb42
http://xblock.pro/ethereum/
http://xblock.pro/ethereum/
http://xblock.pro/ethereum/
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb44
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb44
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb44
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb45
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb45
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb45

J. Sun et al. Information Fusion 120 (2025) 103074
[46] T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional
networks, 2016, arXiv preprint arXiv:1609.02907.

[47] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, Y. Bengio, Graph
attention networks, 2017, arXiv preprint arXiv:1710.10903.

[48] W. Hamilton, Z. Ying, J. Leskovec, Inductive representation learning on large
graphs, Adv. Neural Inf. Process. Syst. 30 (2017).

[49] X. Li, Z. Fan, F. Huang, X. Hu, Y. Deng, L. Wang, X. Zhao, Graph neural network
with curriculum learning for imbalanced node classification, Neurocomputing
574 (2024) 127229.

[50] G. Du, J. Zhang, M. Jiang, J. Long, Y. Lin, S. Li, K.C. Tan, Graph-based class-
imbalance learning with label enhancement, IEEE Trans. Neural Netw. Learn.
Syst. 34 (9) (2021) 6081–6095.
12
[51] W. Cunha, V. Mangaravite, C. Gomes, S. Canuto, E. Resende, C. Nascimento, F.
Viegas, C. França, W.S. Martins, J.M. Almeida, et al., On the cost-effectiveness of
neural and non-neural approaches and representations for text classification: A
comprehensive comparative study, Inf. Process. Manage. 58 (3) (2021) 102481.

[52] A. Helan, Z.N. Sultani, Topic modeling methods for text data analysis: a review,
in: AIP Conference Proceedings, 2457, (1) AIP Publishing, 2023.

[53] F. Errica, M. Podda, D. Bacciu, A. Micheli, A fair comparison of graph neural
networks for graph classification, 2019, arXiv preprint arXiv:1912.09893.

[54] Y. Wang, J. Zhang, S. Guo, H. Yin, C. Li, H. Chen, Decoupling representation
learning and classification for gnn-based anomaly detection, in: Proceedings of
the 44th International ACM SIGIR Conference on Research and Development in
Information Retrieval, 2021, pp. 1239–1248.

http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1710.10903
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb48
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb48
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb48
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb49
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb49
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb49
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb49
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb49
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb50
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb50
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb50
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb50
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb50
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb51
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb51
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb51
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb51
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb51
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb51
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb51
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb52
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb52
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb52
http://arxiv.org/abs/1912.09893
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb54
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb54
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb54
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb54
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb54
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb54
http://refhub.elsevier.com/S1566-2535(25)00147-2/sb54

	Ethereum fraud detection via joint transaction language model and graph representation learning
	Introduction
	Background and Related work
	Background
	Related work

	Method
	Transaction Language Model
	Linguistic Representation of Transactions
	Transaction Semantic Embedding

	Transaction Attribute Similarity Graph
	Semantic and Similarity Embedding Fusion
	Account Interaction Graph
	Joint Training of MAN and AIG

	Dataset Review
	MulDiGraph
	B4E
	Our Dataset SPN

	Experience
	Comparison with Baselines (RQ1)
	Ablation Study of Attribute Similarity Graph (RQ2)
	Impact of the Trade-off Parameter (RQ3)
	Different GNN Model Combination (RQ4)

	Limitation
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References

