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 A B S T R A C T

Ethereum faces growing fraud threats. Current fraud detection methods, whether employing graph neural 
networks or sequence models, fail to consider the semantic information and similarity patterns within 
transactions. Moreover, these approaches do not leverage the potential synergistic benefits of combining both 
types of models. To address these challenges, we propose TLMG4Eth that combines a transaction language 
model with graph-based methods to capture semantic, similarity, and structural features of transaction data 
in Ethereum. We first propose a transaction language model that converts numerical transaction data into 
meaningful transaction sentences, enabling the model to learn explicit transaction semantics. Then, we propose 
a transaction attribute similarity graph to learn transaction similarity information, enabling us to capture 
intuitive insights into transaction anomalies. Additionally, we construct an account interaction graph to capture 
the structural information of the account transaction network. We employ a deep Multi-Head Attention 
Network to fuse transaction semantic and similarity embeddings, and ultimately propose a joint training 
approach for the Multi-Head Attention Network and the account interaction graph to obtain the synergistic 
benefits of both. Our model achieves performance improvements ranging from 9.62% to 13.2% over state-of-
the-art methods on two public datasets and a newly introduced dataset. Our code is available at the following 
link: https://github.com/lincozz/TLmGNN.
. Introduction

Blockchain technology has revolutionized various industries by 
roviding a decentralized and secure method for recording transac-
ions [1]. Among blockchain platforms, Ethereum stands out for its 
obust support of smart contracts and decentralized applications [2]. 
y introducing the concept of a programmable blockchain, Ethereum 
nabled developers to create applications beyond basic financial trans-
ctions [3]. This innovation has established Ethereum as a foundational 
ayer for numerous blockchain applications, including decentralized 
inance (DeFi) and non-fungible tokens (NFTs) [4–7].
The growing adoption and value of Ethereum have, however, at-

racted malicious actors intent on exploiting the platform for financial 
ain. Fraudulent activities within the Ethereum ecosystem primar-
ly include phishing, Ponzi schemes, transaction manipulation, and 
ounterfeit dApps. Alarmingly, phishing scams constitute a significant 
ortion of malicious fraud within the blockchain ecosystem, accounting 
or approximately 50% of such incidents [8]. Phishing and fraud have 

∗ Corresponding author.
E-mail addresses: jgsun@xidian.edu.cn (J. Sun), wangyanbin15@mails.ucas.ac.cn (Y. Wang).

become significant challenges within the Ethereum ecosystem. Phishing 
typically involves deceiving users into revealing sensitive information 
for financial gain, often via fake websites or messages [9]. Fraud spans 
a range of activities, including transaction manipulation and counterfeit 
dApps, aimed at deceiving users or systems for profit. The scale of 
these threats is evident in recent data. According to the Chainalysis 
2023 Crypto Crime Report [10], USD 39.6 billion worth of crypto-assets 
were received by identified illicit addresses, representing 0.42% of total 
on-chain transaction volume—an increase from the previous year’s 
USD 23.2 billion. This trend highlights the urgent need for effective 
detection and mitigation measures within the Ethereum network.

Ethereum fraud detection primarily relies on analyzing historical 
transaction records of accounts. Current methods predominantly em-
ploy Graph Neural Networks (GNNs) to model account transaction 
networks, or utilize sequence models such as Transformers [11] to 
process transaction histories. GNNs excel at capturing complex rela-
tionships and structural patterns within transaction networks [12–14], 
ttps://doi.org/10.1016/j.inffus.2025.103074
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Fig. 1. The distribution patterns of the transaction count and lifespan of identified phishing accounts.
 

while sequence models are proficient in discerning temporal patterns 
and evolving behaviors [15–17].

However, current research fails to consider several crucial aspects: 
(1) Transaction Semantics: Existing approaches rely on historical trans-
action data in its numerical form, which lacks the context to interpret 
underlying intentions. As a result, the explicit meaning of transactions 
remains obscure, hindering models from understanding transaction se-
mantics beyond mere numbers. (2) Transactional Similarity: Extracting 
similarity information from transaction attributes (such as amount, 
direction, and timing) is crucial for distinguishing between normal and 
anomalous transactions. Previous studies have overlooked the modeling 
of attribute similarities, which can offer direct insights into fraudulent 
behavior patterns. (3) Synergistic Optimization: While some studies 
have attempted to combine GNNs with sequence models, they typically 
adopt a late fusion approach, training the models separately and con-
catenating their features at the final stage. This approach fails to fully 
realize the potential synergies between the two methods.

To address the current challenges, we propose TLMG4Eth, which 
combines a transaction language model (TLM) with two transaction 
graphs to enhance Ethereum fraud detection, offering new insights 
for strengthening the security of the decentralized finance ecosystem. 
We first train a transaction language model to learn explicit transac-
tion semantics from transaction sentences, where transaction attributes 
(amount, direction, time, and other numerical data) are represented as 
words. Next, we propose a transaction attribute graph to model global 
semantic similarities between transactions and construct an account 
interaction graph to model transaction behaviors between accounts. 
We fuse transaction semantics, similarities, and structural informa-
tion through a two-stage approach. First, we use a deep Multi-Head 
Attention Network to fuse the semantic embeddings and similarity 
embeddings of transactions. Then, we propose to jointly train the Multi-
Head Attention Network with the account interaction graph to leverage 
their synergistic benefits.

Our main contributions include:

• We propose a transaction language model that transforms numerical 
transaction sequences into transaction sentences, clearly expressing 
transaction content and enabling the learning of explicit transaction 
semantics.

• We propose a transaction attribute similarity graph to model global 
semantic similarities between transactions, thereby capturing intu-
itive insights into transaction anomalies.

• We use a Multi-Head Attention Network to fuse transaction semantic 
and similarity information. Furthermore, we propose jointly training 
this Multi-Head Attention Network with an account interaction graph 
to obtain the benefits of both.

• Our proposed method significantly outperforms current state-of-the-
art approaches, improving F1 Scores by 9.62%%-13.2% across three 
datasets.

• We release a new dataset providing an up-to-date view of phishing 
activities on the Ethereum transaction network, facilitating further 
research in this area.
2 
2. Background and related work

2.1. Background

In the Ethereum network, there are two main types of accounts: 
Externally Owned Accounts (EOAs) and Contract Accounts.

Externally Owned Accounts (EOAs) EOAs are controlled by private 
keys held by users. These accounts can initiate transactions to transfer 
cryptocurrency or trigger contract executions. We primarily focus on 
EOAs because they are directly controlled by humans, making them 
more susceptible to phishing and other fraudulent activities.

Contract Accounts These accounts are essentially smart contracts, 
which are self-executing programs running on the Ethereum blockchain.
Contract accounts cannot initiate transactions themselves but can exe-
cute internal transactions when triggered by EOAs [18,19].

Internal Transactions These transactions are initiated by smart 
contracts and occur within the blockchain. They are typically used for 
complex operations within contracts and are not directly initiated by 
users.

External Transactions These are transactions initiated by EOAs, 
involving the transfer of cryptocurrency to other EOAs or contract 
accounts. External transactions are our primary focus because they 
directly reflect user activities and are more likely to reveal fraudulent 
behavior [20,21].

The focus on EOAs and external transactions is crucial for detect-
ing fraud because these transactions provide clear insights into user 
behavior and potential phishing activities. Internal transactions, while 
important, do not offer the same direct evidence of user-controlled 
activities.

Phishing accounts on Ethereum tend to have very short lifespans. 
This is because once a phishing account is identified and reported, it 
is quickly flagged and often deactivated by the community or relevant 
authorities. As shown in Fig.  1 our investigation into 7067 identified 
phishing accounts revealed that 6454 of these accounts have fewer than 
100 transactions each. This indicates that phishing operations often 
involve creating multiple accounts that execute a limited number of 
transactions to avoid detection and maximize their impact before being 
flagged.

2.2. Related work

Graph-based methods Graph-based methods construct transaction net-
works between accounts and employ graph embedding algorithms or 
GNNs for model training. [22–24] use Node2Vec to extract features 
from Ethereum transaction networks for fraudulent account detection. 
Trans2Vec [25] utilizes DeepWalk [26], dividing representation learn-
ing into node, edge, and attribute learning for classification. TGC [8] 
employs subgraph contrastive learning with statistical data for phishing 
address identification. [27,28] construct statistical features based on 
transaction records and apply these features to the graph representa-
tion learning method based on the attention mechanism. SIEGE [29] 
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Fig. 2. The framework of proposed Joint Transaction Language Model and Graph Representation Learning.
 

 

proposes a self-supervised incremental graph learning model, which 
effectively improves the performance of Ethereum phishing fraud de-
tection through spatiotemporal pre-tasks and incremental learning. 
TokenScout [30] uses time graph learning technology to build a dy-
namic graph model to monitor Ethereum token trading behavior and 
achieve early detection of fraudulent tokens.
Sequence-based methods Graph-based approaches may struggle with 
high-frequency, repetitive transactions and long-term temporal pat-
terns, leading some researchers to adopt sequence models that treat 
transactions as time-ordered event streams. BERT4ETH [31] and ZipZap
[32] exemplifies this approach, employing a BERT-like structure with 
a Transformer architecture to process chronological transaction events. 
It uses a masked language model for pre-training by randomly masking 
transaction addresses, then fine-tunes a Multi-Layer Perceptron (MLP) 
network for account classification.
Hybrid methods TSGN [33] introduces a transaction subgraph network 
model for phishing detection, integrating Handcrafted and Diffpool 
features while enhancing classification with diverse mapping mecha-
nisms. Similarly, TTAGN [34] adopts a multi-step approach, leverag-
ing Edge2Node for edge aggregation, time-based transaction graphs 
with LSTM for temporal patterns, and statistical feature extraction, 
ultimately combining these representations for classification. [35] pro-
poses a new Ethereum transaction fraud detection technology based on 
a stacking method, which effectively improves the ability to identify 
fraudulent behavior by integrating the advantages of multiple mod-
els. [36] uses a method that combines convolutional neural networks 
and XGBoost classifiers to distinguish normal accounts from illegal 
accounts based on transaction history. Grabphisher [37] extracts ac-
count features by extracting account temporal features and capturing 
dynamic topological information during graph evolution, constructing 
the evolution pattern of transaction accounts into a continuous-time 
diffusion network graph.

Existing graph-based deep learning and graph embedding meth-
ods have made significant strides in fraud detection by effectively 
capturing structural properties and complex dependencies within trans-
action networks. However, they fail to preserve the transaction order, 
overlook position embeddings, and lack the integration of semantic 
information from transaction attributes with structural data. These 
limitations hinder their ability to fully understand transaction contexts. 
Although Transformer-based sequence models can capture transaction 
sequence information, they are less effective than graph-based methods 
3 
in capturing key account interactions and topological information. 
Specifically, they still rely on context-independent numerical features 
of accounts and fail to incorporate explicit transaction semantics. Our 
proposed TLMG4Eth method addresses these challenges by combining 
a transaction language model with a multi-head attention network, 
effectively capturing both semantic and structural aspects to enhance 
detection performance.

Beyond individual model improvements, traditional model-ensemble
approaches, while leveraging the strengths of multiple models, often 
suffer from limited interaction and inter-model communication. Typ-
ically, these methods treat each model as an isolated entity, merely 
aggregating outputs post-hoc without fostering dynamic collaboration 
during training. In contrast, our approach employs a joint training 
framework, enabling continuous feedback and shared parameter opti-
mization among models. This synergistic interaction not only enhances 
individual model performance but also allows them to dynamically 
adapt to each other’s strengths and weaknesses, resulting in a more 
cohesive and robust system capable of capturing complex patterns and 
interdependencies within transaction data.

3. Method

In this section, we introduce in detail how TLMG4Eth integrates 
the pre-trained language model with GNNs to achieve the fusion 
of sequence and network structure information. The architecture of 
TLMG4Eth is depicted in 2. For a clearer understanding, our ex-
planation is divided into the following parts: Transaction Language 
Model, Transaction Attribute Similarity Graph, Semantic and Similarity 
Embedding Fusion, Account Interaction Graph, Joint Training of MAN 
and AIG. Several important notations used in this paper are summarized 
in Table  1.

3.1. Transaction language model

The Transaction Language Model (TLM) consists of two main parts: 
first, we create a linguistic representation of numerical transaction data; 
second, we employ a language model to extract semantic embeddings 
from transaction sentences.



J. Sun et al. Information Fusion 120 (2025) 103074 
3.1.1. Linguistic representation of transactions
Numerical transaction data often obscures specific transaction in-

formation. To address this, we propose a linguistic representation of 
transactions to elucidate their content.

Let  = {𝑡1, 𝑡2,… , 𝑡𝑁} be the set of 𝑁 transactions associated with 
a single account. Each transaction 𝑡𝑖 is characterized by a tuple:
𝑡𝑖 = (𝑣𝑖, 𝑑𝑖, 𝜏𝑖) (1)

where:

• 𝑣𝑖 is the transaction amount.
• 𝑑𝑖 ∈ {−1, 1} is the transaction direction, with −1 indicating an 
inflow and 1 indicating an outflow.

• 𝜏𝑖 ∈ T is the timestamp of the transaction, where T is the set of 
all possible timestamps.

We transform each numerical attribute into a linguistic token by 
prepending a descriptive text indicator:
(𝑡𝑖) = {amount: 𝑣𝑖,  direction: 𝑑𝑖,  timestamp: 𝜏𝑖} (2)

However, raw Ethereum timestamps (e.g., 2024121214) lack in-
terpretability and may mislead models due to their large numerical 
values. To address this, we capture the intervals between consecutive 
transactions rather than using raw timestamps.

Let 𝜏𝑖 denote the timestamp of transaction 𝑡𝑖. We define the time 
intervals as:
𝛥𝜏𝑖,𝑛 = 𝜏𝑖 − 𝜏𝑖−𝑛, for 𝑛 ∈ {1, 2, 3, 4, 5} (3)

where 𝛥𝜏𝑖,𝑛 represents the time difference between transaction 𝑡𝑖 and 
its 𝑛th preceding transaction.

We incorporate the time differences from the 2nd to the 5th preced-
ing transactions into (𝑡𝑖). The enhanced representation ′(𝑡𝑖) is defined 
as:
′(𝑡𝑖) = {amount: 𝑣𝑖,  direction: 𝑑𝑖,

2-inter_time: 𝛥𝜏𝑖,2,
3-inter_time: 𝛥𝜏𝑖,3,
4-inter_time: 𝛥𝜏𝑖,4,
5-inter_time: 𝛥𝜏𝑖,5}

(4)

This enhanced representation captures transaction clustering at dif-
ferent time granularities. Each element in ′(𝑡𝑖) is treated as a transac-
tion word.

The 𝑁 transactions of an account form a series of transaction 
sentences :
 = {′(𝑡1),′(𝑡2),… ,′(𝑡𝑁 )} (5)

3.1.2. Transaction semantic embedding
We employ BERT-base [38] to extract semantic embeddings from 

these transaction representations. We continue training BERT using our 
domain-specific pre-training corpus, denoted as :
 =

⋃

𝑎∈
𝑎 (6)

where  is the set of all accounts, and 𝑎 is the transaction sentences 
for account 𝑎.

We use a masked language model (MLM) objective:

MLM = E𝑡∼

[

−
∑

𝑖∈
log𝑃 (𝑥𝑖|𝑡)

]

(7)

where  is the set of masked token indices, 𝑡 is the masked version 
of transaction sentence 𝑡, 𝑥𝑖 is the 𝑖th token in 𝑡, and 𝑃 (𝑥𝑖|𝑡) is the 
probability of predicting the original token 𝑥𝑖 given the masked context.

After pre-training, for each token 𝑥𝑖 in a transaction sentence 𝑡, 
BERT-base generates a semantic embedding vector:
𝐞𝑠𝑖 = BERT(𝑥𝑖|𝑡) ∈ R𝑑 (8)

where 𝑑 is the dimensionality of the embedding space.
4 
Table 1
Key notation and description.
 Notations Descriptions  
  Set of 𝑁 transactions for a single account  
 𝑡𝑖 Transaction 𝑖, characterized by (𝑣𝑖 , 𝑑𝑖 , 𝜏𝑖)  
 𝑣𝑖 Transaction amount in 𝑡𝑖  
 𝑑𝑖 Transaction direction in 𝑡𝑖; −1 inflow, 1 outflow  
 𝜏𝑖 Timestamp of transaction 𝑡𝑖  
 𝛥𝜏𝑖,𝑛 Time difference of 𝑡𝑖 and 𝑡𝑖−𝑛  
 (𝑡𝑖) Linguistic representation of transaction 𝑡𝑖  
 ′(𝑡𝑖) Enhanced linguistic representation of transaction 𝑡𝑖 
  Sequence of transaction sentences for an account  
  Set of all accounts  
  Corpus of all transaction sentences  
 𝑤 = (𝑤 , 𝑤) TASG with word nodes and edges  
 𝑤𝑖, 𝑤𝑗 Words in the vocabulary  
 NPMI(𝑤𝑖 , 𝑤𝑗 ) NPMI between 𝑤𝑖 and 𝑤𝑗  
 TF-IDF(𝑤𝑖 , 𝑑) TF-IDF score of word 𝑤𝑖 in sentence 𝑑  
 𝜃 Predefined threshold for NPMI or TF-IDF  
 𝐞𝑔𝑖 Similarity embedding of word 𝑤𝑖 from TASG  
 𝐄𝑖 Concatenated embedding [𝐞𝑠𝑖 ; 𝐞𝑔𝑖 ]  
 𝐐, 𝐊, 𝐕 Query, key, and value matrices in attention  
 𝑑𝑘 Dimensionality of key vectors  
 𝐙 Output from Multi-Head Attention Network (MAN) 
 𝐇 Feature vector corresponding to the [CLS] token  
 𝑎 = (𝑉𝑎 , 𝐸𝑎) Account Interaction Graph  
 𝑉𝑎 Set of account nodes in AIG  
 𝐸𝑎 Set of edges between accounts in AIG  
 𝑤𝑖𝑗 Weight of edge between accounts 𝑖 and 𝑗  
 𝐀 Adjacency matrix of AIG  
 𝐗 Initial node features for GCN from MAN outputs  
 𝐇(𝑙) Node features at layer 𝑙 of GCN  
 𝐀̂ Normalized adjacency matrix with self-loops  
 𝜎(⋅) Activation function  
 𝐙GCN Output of GCN after processing node embeddings  
 𝐙MAN Prediction from MAN  
 𝜆 Hyperparameter balancing MAN and GCN outputs  
 Pred Final prediction after combining MAN and GCN  
 𝑦𝑖 Ground-truth label for sample 𝑖  
  Cross-entropy loss function  

Fig. 3. The generation and combination of ethereum transaction semantic embedding 
and similarity embedding.

3.2. Transaction attribute similarity graph

While pretrained language models can capture semantic features 
from account transaction records, their embeddings rely solely on indi-
vidual account histories and lack sensitivity to anomalous terms within 
transaction texts—critical information for distinguishing phishing ac-
counts. For instance, phishing accounts often execute large transactions 
within short intervals, exhibiting similar semantic patterns in both 
transaction amounts and temporal behavior. To address this limitation, 
we propose the Transaction Attribute Similarity Graph (TASG), which 
captures global transaction correlations across Ethereum data, offering 
intuitive insights into anomalies.
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We generate a vocabulary from the tokenized transaction corpus. 
Subsequently, we construct the TASG using two approaches: Nor-
malized Pointwise Mutual Information (NPMI) and Term Frequency-
Inverse Document Frequency (TF-IDF). Let TASG be denoted as 𝑤 =
(𝑤, 𝑤), where 𝑤 represents the set of nodes corresponding to words 
in the vocabulary, and 𝑤 represents the set of edges connecting these 
nodes. The presence of an edge between two nodes is determined by 
their NPMI or TF-IDF value.

The NPMI [39] between two words 𝑤𝑖 and 𝑤𝑗 is calculated as 
follows:

NPMI(𝑤𝑖, 𝑤𝑗 ) =
log 𝑝(𝑤𝑖 ,𝑤𝑗 )

𝑝(𝑤𝑖)𝑝(𝑤𝑗 )

− log 𝑝(𝑤𝑖, 𝑤𝑗 )
(9)

where 𝑝(𝑤𝑖, 𝑤𝑗 ) is the probability of co-occurrence of 𝑤𝑖 and 𝑤𝑗 within 
a given context window, and 𝑝(𝑤𝑖) and 𝑝(𝑤𝑗 ) are the individual proba-
bilities of 𝑤𝑖 and 𝑤𝑗 . In our approach, the window size is the length of 
one transaction sentence, and we create an edge between two words if 
their NPMI exceeds a predefined threshold 𝜃.

The TF-IDF [40] score of word 𝑤𝑖 in transaction sentence 𝑑 is 
calculated as follows:

TF-IDF(𝑤𝑖, 𝑑) = TF(𝑤𝑖, 𝑑) × log
(

𝑁
|{𝑑′ ∈ 𝐷 ∶ 𝑤𝑖 ∈ 𝑑′}|

)

(10)

where TF(𝑤𝑖, 𝑑) is the term frequency of word 𝑤𝑖 in transaction sen-
tence 𝑑, 𝑁 is the total number of sentences in the corpus 𝐷, and 
|{𝑑′ ∈ 𝐷 ∶ 𝑤𝑖 ∈ 𝑑′}| is the number of sentences containing 𝑤𝑖. In our 
approach, we introduce additional sentence nodes in the vocabulary 
graph to model a TF-IDF-based TASG 𝑤; the connectivity between 
sentence nodes and word nodes depends on whether their TF-IDF values 
exceed the predefined threshold 𝜃.

We then apply a Graph Convolutional Network (GCN) to encode 
nodes in the TASG, obtaining global similarity embeddings 𝐞𝑔𝑖  for each 
word 𝑤𝑖. Intuitively, NPMI can capture tokens with high co-occurrence 
frequency in transaction sentences, while TF-IDF can reveal the token 
in the transaction sentence that can best identify an account. These two 
strategies provide fine-grained information supplements for clarifying 
the semantics of account transactions from the perspectives of word 
similarity and discriminability, respectively, alleviating the deficiency 
of the semantic embedding obtained by language modeling that lacks 
global information.

3.3. Semantic and similarity embedding fusion

Since the vocabulary used for generating the transaction sequence 
semantic embeddings and constructing the vocabulary graph are both 
derived from the same tokenizer, the words in each account’s transac-
tion sequence are a subset of the vocabulary graph [41]. As shown in 
Fig.  3, we select the corresponding word nodes from the TASG based 
on the input transaction sequence and concatenate the transaction sim-
ilarity embeddings generated by TASG with the semantic embeddings 
generated by TLM.

For each token 𝑥𝑖 in the transaction sequence, we obtain its semantic 
embedding 𝐞𝑠𝑖  from the TLM and its similarity embedding 𝐞𝑔𝑖  from the 
TASG GCN encoder. We then concatenate them:
𝐄𝑖 = [𝐞𝑠𝑖 ; 𝐞

𝑔
𝑖 ] (11)

where [⋅; ⋅] denotes concatenation along the feature dimension.
We fuse the information from the two types of embeddings 𝐄𝑖 using 

a deep Multi-Head Attention Network (MAN) that consists of 12 layers, 
each with 12 attention heads. The computation for each attention head 
is as follows:

Attention(𝐐,𝐊,𝐕) = softmax
(

𝐐𝐊⊤
√

𝑑𝑘

)

𝐕 (12)

where 𝐐, 𝐊, and 𝐕 are the query, key, and value matrices, respectively, 
and 𝑑  is the dimensionality of the key vectors.
𝑘

5 
The multi-head attention involves several independent attention 
heads, each computing the scaled dot-product attention. Through these 
attention mechanisms, in a 12-layer, 12-head self-attention encoder, 
semantic embeddings and similarity embeddings interact layer by layer 
to achieve fusion. Each word vector obtains a representation encoding 
contextual information. The corresponding output is denoted as:
𝐙 = Concat(head1,head2,… ,headℎ)𝐖𝑂 (13)

where 𝐙 ∈ R𝐵×𝐿×𝐹 , 𝐵 is the batch size, 𝐿 is the sequence length, 𝐹
is the dimension of the multi-head attention hidden layer, ℎ is the 
number of attention heads (here ℎ = 12), and 𝐖𝑂 is the learned 
projection matrix that linearly transforms the concatenated outputs 
from all attention heads into the final dimensionality required by the 
model.

By extracting the hidden state 𝐇 ∈ R𝐵×𝐹  corresponding to the 
‘‘[CLS]’’ token (the first token) from the final output of the encoder, 
we obtain the global feature vector 𝐇 of the sequence and get the final 
representation of the transaction sequence by the transaction language 
model. This representation is applied to subsequent classification tasks.

3.4. Account interaction graph

We construct an Account Interaction Graph (AIG) to model trans-
action relationships between accounts and capture the topological in-
formation of transactions. We represent the AIG as a weighted graph 
𝑎 = (𝑉𝑎, 𝐸𝑎), where 𝑉𝑎 is the set of account nodes in the transaction 
network, with each node representing an individual account, and 𝐸𝑎
is the set of edges, where each edge (𝑖, 𝑗) represents that account 𝑖 has 
transacted with account 𝑗. The weight of an edge 𝑤𝑖𝑗 represents the 
number of transactions between account 𝑖 and account 𝑗.

The adjacency matrix of the graph is denoted as 𝐀 ∈ R𝑁𝑎×𝑁𝑎 , where 
𝑁𝑎 = |𝑉𝑎| is the number of account nodes. The weight matrix 𝐖 ∈
R𝑁𝑎×𝑁𝑎  contains the transaction counts between pairs of nodes [42].

We initialize the account node features 𝐗 ∈ R𝑁𝑎×𝐹  using the 
transaction sequence representations obtained from the TLM in the 
previous section, where 𝐹  is the feature dimension.

The account nodes are iteratively updated using a GCN. The update 
rule for layer 𝑙 + 1 is given by:

𝐇(𝑙+1) = 𝜎
(

𝐀̂𝐇(𝑙)𝐖(𝑙)
)

(14)

where:

• 𝐇(𝑙) ∈ R𝑁𝑎×𝐹 (𝑙)  is the node feature matrix at layer 𝑙.
• 𝐀̂ = 𝐃− 1

2 (𝐀 + 𝐈)𝐃− 1
2  is the normalized adjacency matrix with 

self-loops added (𝐈 is the identity matrix and 𝐃 is the degree 
matrix).

• 𝐖(𝑙) ∈ R𝐹 (𝑙)×𝐹 (𝑙+1)  is the trainable weight matrix for layer 𝑙.
• 𝜎(⋅) is a non-linear activation function, such as ReLU.

3.5. Joint training of MAN and AIG

We combine the Multi-Head Attention Network (MAN) and the 
Account Interaction Graph (AIG) for joint model training.

First, we use the output 𝐇 from the MAN as the initial node 
embeddings 𝐗 for the GCN on the AIG, The GCN processes 𝐗 and 
outputs node representations 𝐙GCN:

𝐗 = 𝐇 (15)
𝐙GCN = GCN(𝐗,𝐀) (16)

We also obtain the prediction 𝐙MAN from the MAN by applying a 
classification layer on 𝐇:
𝐙MAN = softmax(𝐖MAN𝐇 + 𝐛MAN) (17)

where 𝐖MAN and 𝐛MAN are the weights and biases of the classification 
layer.



J. Sun et al.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

Information Fusion 120 (2025) 103074 
Then, we linearly interpolate the predictions from the MAN and 
GCN to obtain the final prediction:
Pred = 𝜆𝐙GCN + (1 − 𝜆)𝐙MAN (18)

where 𝜆 ∈ [0, 1] is a hyperparameter controlling the balance between 
the two models’ contributions to the result. 𝜆 = 0 means that we use 
only the MAN model, while 𝜆 = 1 means that we use only the GCN 
model.
Algorithm 1: Process of TLMG4Eth Framework
Input: Account set - 

Transaction data - 
Labels - 
Learning rate - 𝜂
Batch size - 𝐵
Threshold for TASG - 𝜃
Interpolation weight - 𝜆
Number of epochs - 𝐸

Output: Trained model parameters 𝛩
Function TLMG4Eth():

⊳ Initialize model parameters
𝛩 ← {𝛩TLM, 𝛩TASG, 𝛩MAN, 𝛩AIG, 𝛩MLP}
 ← BuildVocabulary( )
𝑤 ← ConstructTASG( , 𝜃)
for epoch = 1 to 𝐸 do

for {(𝑎𝑖, 𝑦𝑖)}𝐵𝑖=1 ∈ MiniBatches(,) do
⊳ Extract and encode transaction features
for 𝑎𝑖 ∈  do

𝑎𝑖 ← GetTransactions( , 𝑎𝑖)
𝑎𝑖 ← Trans2Sentences(𝑎𝑖 )
𝐄𝑠
𝑎𝑖
← EncodeSemantic(𝑎𝑖 ;𝛩TLM)

𝐄𝑔
𝑎𝑖 ← EncodeSimilarity(𝑎𝑖 ,𝑤;𝛩TASG)

𝐄𝑎𝑖 ← ConcatEmbedding(𝐄𝑠
𝑎𝑖
,𝐄𝑔

𝑎𝑖 )
𝐡𝑎𝑖 ← FuseEmbed(𝐄𝑎𝑖 ;𝛩MAN)

end 
⊳ Initialize AIG and farwad GNNs
batch𝑎 ← ConstructAIG({𝑎𝑖},  )
𝐙GCN ← AIGForward(batch𝑎 , {𝐡𝑎𝑖};𝛩AIG)
𝐙MAN ← Predict({𝐡𝑎𝑖};𝛩MLP)
⊳ Combine predictions and compute loss
𝐙Pred ← 𝜆𝐙GCN + (1 − 𝜆)𝐙MAN
 ← LossFunction(𝐙Pred, {𝑦𝑖})
⊳ Update model parameters
𝛩 ← 𝛩 − 𝜂∇𝛩

end 
end 

return all parameters 𝛩

To reduce computational complexity and memory requirements, we 
introduce a batch update method to achieve synchronous mini-batch 
training for both the MAN and GCN. Specifically, we construct a dic-
tionary to track the embeddings of all accounts in both models. In each 
iteration, we sample a mini-batch from phishing and normal accounts, 
compute their semantic embeddings, and update the corresponding 
node embeddings in the AIG through the dictionary.

To mitigate confounding biases, the model is fine-tuned to lever-
age shared representations for prediction. We jointly optimize both 
MAN predictions and GCN predictions to enhance overall performance. 
Specifically, we use the updated node embeddings to derive the GCN 
output, and after performing prediction interpolation, we calculate the 
cross-entropy loss for the current mini-batch. The loss function can be 
expressed as:

 = − 1
𝐵

𝐵
∑

𝑖=1

[

𝑦𝑖 log(Pred𝑖) + (1 − 𝑦𝑖) log(1 − Pred𝑖)
]

(19)

where 𝐵 is the mini-batch size, 𝑦𝑖 is the ground-truth label for sample 
𝑖 (1 for phishing account, 0 for normal account), and Pred𝑖 is the 
predicted probability for sample 𝑖.
6 
Table 2
Summary of three datasets.
 Dataset Nodes Edges Avg degree Phisher 
 MulDiGraph 2,973,489 13,551,303 4.5574 1,165  
 B4E 597,258 11,678,901 19.5542 3,220  
 SPN 496,740 831,082 1.6730 5,619  

During training, the transaction language model first initializes the 
embeddings of the account nodes in the AIG. The GCN then updates 
these node embeddings by aggregating information from neighboring 
nodes, capturing topological structure features. The joint optimization 
of the parameters of the MAN and GCN gradually enhances the comple-
mentary advantages of the language model and the graph model. The 
final model demonstrates excellent performance in detecting Ethereum 
phishing accounts.

4. Dataset review

As shown in Table  2, we utilized three datasets: MulDiGraph,1 
B4E,2 and SPN. We process the dataset according to the methods in 
Section 3.1, 3.2 and 3.4 to obtain account transaction text, similarity 
information and transaction graph respectively.

4.1. MulDiGraph

This dataset is publicly available on the XBlock [43] platform 
and is a widely used dataset that was released in December 2020. It 
includes a large Ethereum transaction network obtained by performing 
a two-hop Breadth-First Search (BFS) from known phishing nodes. 
The dataset contains 2,973,489 nodes, 13,551,303 edges, and 1,165 
phishing nodes, which contain basic transaction information such as 
transaction amount and timestamps.

4.2. B4E

This dataset was collected via an Ethereum node using Geth [31]. 
It covers transactions from January 1, 2017, to May 1, 2022, in-
cluding 3,220 phishing accounts and 594,038 normal accounts. The 
dataset contains 328,261 transactions involving phishing accounts and 
1,350,640 involving normal accounts. It is divided into four groups: 
phishing accounts, normal accounts, incoming transactions, and outgo-
ing transactions.

4.3. Our dataset SPN

Second order Phishing Network, we created this dataset using the 
Etherscan API. Starting from the most recently identified all phishing 
nodes, we performed a two-hop BFS to gather information on their 
neighbors and extracted the first 100 transaction records for each 
involved node [44]. This dataset contains trading information prior to 
June 7, 2024, includes 5,619 phishing accounts and 491,121 normal 
accounts, with a total of 831,082 transaction edges. Compared to other 
datasets, SPN provides an up-to-date view of the Ethereum trading envi-
ronment, focusing on recent phishing activities and network dynamics 
in a graph structure.

1 xblock.pro/#/dataset/13
2 https://github.com/git-disl/BERT4ETH

http://xblock.pro/#/dataset/13
https://github.com/git-disl/BERT4ETH
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Table 3
The performances with our method and baseline methods on three datasets, and B-Acc is a Balanced Accuracy.
 Method MulDiGraph B4E SPN

 Precision Recall F1 B-Acc Precision  Recall F1 B-Acc Precision Recall F1 B-Acc  
 Role2Vec 0.4688 0.6976 0.5608 0.6511 0.5748 0.7958 0.6673 0.7507 0.4521 0.7059 0.5512 0.6391  
 Trans2Vec 0.7114 0.6944 0.7029 0.7768 0.2634 0.7043 0.3842 0.3598 0.3928 0.7381 0.5134 0.5838  
 GCN 0.2960 0.7513 0.4247 0.4289 0.5515 0.7508 0.6359 0.7228 0.5046 0.4973 0.5009 0.6266  
 GAT 0.2689 0.7917 0.4014 0.3577 0.4729 0.8348 0.6038 0.6848 0.5083 0.7720 0.6130 0.6993  
 SAGE 0.3571 0.3299 0.3430 0.5164 0.4589 0.5826 0.5134 0.6196 0.4557 0.5817 0.5110 0.6172  
 TSGN 0.6305 0.7148 0.6700 0.7526 0.6513 0.7954 0.7161 0.7912 0.6055 0.6793 0.6402 0.7290  
 GrabPhisher 0.7639 0.8369 0.7987 0.8537 0.7251 0.6138 0.6648 0.7487 0.6736 0.7929 0.7283 0.8003  
 BERT4ETH 0.4469 0.7344 0.5557 0.6400 0.7421 0.6125 0.6711 0.7530 0.7566 0.6713 0.7114 0.7817  
 ZipZap 0.4312 0.7128 0.5429 0.6247 0.7356 0.6112 0.6676 0.7506 0.7496 0.6733 0.7094 0.7804  
 Ours 0.8919 0.9167 0.9041 0.9305 0.8158 0.8087 0.8123 0.8587 0.7962 0.8339 0.8146 0.8636  
 Improv. (%) 16.8 9.5 13.2 9.0 9.9 −2.6 9.62 8.5 11.8 5.2 11.8 7.9  
5. Experience

In this section, we present the experimental results of TLMG4Eth, an 
Ethereum phishing account detection model. We raised several research 
questions that we wanted to explore and answered them through exper-
imental investigations, including comparison with common phishing 
detection methods, the validity and necessity of each module, proving 
the superior performance of our method in Ethereum phishing account 
detection.

• RQ1: How well does TLMG4Eth based on transaction semantics and 
transaction networks detect phishing scams compared to other base-
line phishing scam detection methods?

• RQ2: Does the introduction of similarity embedding from the trans-
action attribute similarity graph by applying graph convolution effec-
tively enhance the model?

• RQ3: How does the parameter 𝜆 that controls the weight of the lan-
guage model and GNN model in joint training affect the performance 
of the model?

• RQ4: How does the combination of different GNN models and lan-
guage models affect model performance?

TLMG4Eth is compared against several baselines including graph 
embedding methods (Role2Vec [45], Trans2Vec [25]), graph neural 
networks (GCN [46], GAT [47], SAGEConv [48]), and a Transformer-
based method (BERT4ETH [31]). For practical considerations, we limit 
our analysis to the 100 most recent transactions per account. Our model 
configuration employs the BERT-base architecture as the language 
model, while both the transaction attribute similarity graph (TASG) 
and the account interaction graph (AIG) utilize two GCN layers. The 
joint training process is conducted with a batch sampling size of 64 
and a learning rate of 1e−5. Unless otherwise specified, the trade-off 
parameter (𝜆) for joint training of TLM and AIG is set to 0.7. The 
TASG is constructed using TF-IDF scores, with an edge threshold of TF-
IDF ≥ 0.2 to establish link relationships between nodes. The training 
process lasted for 20 epochs, taking approximately 3.5 h to complete. 
All training and inference experiments were conducted on an RTX 
3090 with 24 GB of memory. For baseline methods, we adopt the 
original parameter settings for Trans2Vec and BERT4ETH as reported in 
their respective publications, while other baselines retain their default 
configurations without modifications.

5.1. Comparison with baselines (RQ1)

In this section, we present a comparative analysis of our proposed 
TLMG4Eth model with nine baseline methods. Table  3 and Fig.  4 
summarizes the experimental results across the three datasets. While 
GrabPhisher achieves the highest F1 scores on MulDiGraph (0.7987) 
and SPN (0.7283), TSGN demonstrates the best baseline performance 
on B4E (0.7161). Nevertheless, TLMG4Eth consistently outperforms 
these top baselines on all three datasets, improving F1 scores by ap-
proximately 13.2%, 9.62%, and 11.8% on MulDiGraph, B4E, and SPN, 
7 
respectively. TLMG4Eth also boosts Balanced Accuracy by 9.0%, 8.5%, 
and 7.9% over the strongest baselines in each dataset. The slight 
decrease in B4E recall (−2.61%) is offset by significant precision gains 
(7.37%), resulting in a net improvement in F1-score (9.62%). These 
substantial improvements highlight the efficacy of combining transac-
tion language modeling with graph-based learning for phishing account 
detection.

We attribute these performance gains to two main factors: (i) By 
processing and extracting semantic features from transaction records, 
the language model component effectively captures subtle patterns 
of abnormal behaviors exhibited by phishing accounts, distinguishing 
them from legitimate ones. (ii) TLMG4Eth integrates the strengths of 
a language model and a graph neural network, enabling the model 
to leverage both semantic and structural information. This integra-
tion yields more expressive account representations, thereby enhancing 
classification accuracy.

It is worth noting that TLMG4Eth achieves a slightly larger improve-
ment on MuDiGraph than on the other two datasets. We speculate that 
this is due to the data collection strategy for MuDiGraph (and partially 
for SPN), which employs breadth-first search expansions from phishing 
nodes, yielding more densely connected local transaction subgraphs. 
Such connectivity captures a richer set of topological relationships, 
enabling the model to more effectively leverage global structural cues.

Among the baseline methods, graph embedding-based algorithms 
(e.g., Role2Vec, Trans2Vec) exhibit relatively high recall but suffer 
from lower precision, suggesting a tendency to over-identify phishing 
nodes without sufficient discrimination for normal nodes. This overem-
phasis leads to elevated false positives. Additionally, these methods 
primarily focus on network structure, underutilizing intrinsic transac-
tion attributes that can be especially significant in more structurally 
complex datasets like B4E.

Graph neural network (GNN)-based models also have constraints, 
particularly in how node features propagate through graph convo-
lutions. As neighborhood aggregation deepens, nodes may converge 
toward the majority class (non-phishing), making phishing nodes more 
difficult to distinguish [49,50]. By contrast, our TLMG4Eth framework 
supplements graph convolution with a transaction language model, 
continuously refining node representations with semantic cues. This 
design lessens the risk that phishing nodes become indistinguishable 
as graph convolution layers increase.

Although the Transformer-based BERT4ETH and ZipZap baseline is 
competitive, especially in sequential transaction analysis, its limited ca-
pacity to encode structural topological information constrains its ability 
to capture higher-level relational patterns among accounts. Further-
more, BERT4ETH’s numerical treatment of transaction features does 
not incorporate the nuanced semantic perspective on account behav-
ior, potentially overlooking critical indicators of phishing activity. In 
contrast, TLMG4Eth’s integrated semantic and structural representation 
allows it to detect subtle anomalies more robustly.

While TSGN and GrabPhisher demonstrate strong baseline perfor-
mance, they exhibit key limitations in phishing detection. TSGN, which 
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Fig. 4. ROC curves of the baseline model and TLMG4Eth on different datasets.
Fig. 5. Performance of various TASG construction methods under varying threshold 𝜃.
Table 4
Performance comparison of TLM combined with different versions of TASG versus TLM alone.
 Enhancer MulDiGraph B4E SPN

 Precision Recall F1 B-Acc Precision  Recall F1 B-Acc Precision Recall F1 B-Acc  
 w/o 0.8776 0.8731 0.8753 0.9061 0.7807 0.7850 0.7825 0.8374 0.7902 0.7879 0.7911 0.8417  
 NPMI-TFIDF 0.8953 0.8680 0.8814 0.9086 0.8053 0.7913 0.7982 0.8478 0.7913 0.8182 0.8045 0.8551  
 Improv. (%) 1.77 −0.51 0.61 0.25 2.46 0.63 1.57 1.04 0.11 3.03 1.34 1.34  
 NPMI 0.8784 0.9028 0.8904 0.9202 0.7815 0.8086 0.7949 0.8478 0.7975 0.8289 0.8129 0.8618  
 Improv. (%) 0.08 2.97 1.51 1.40 0.08 2.36 1.24 1.04 0.73 4.10 2.18 2.01  
 TF-IDF 0.8919 0.9167 0.9041 0.9306 0.8158 0.8087 0.8123 0.8587 0.7962 0.8339 0.8146 0.8636  
 Improv. (%) 1.43 4.36 2.88 2.45 3.51 2.37 2.98 2.13 0.60 4.60 2.35 2.19  
relies on static graph motifs, performs well on B4E (F1 = 0.7161) 
but struggles against adaptive phishing tactics that mimic legitimate 
transaction structures. Conversely, GrabPhisher excels on MulDiGraph 
(F1 = 0.7987) but falters on sparser datasets like B4E (F1 = 0.6648), 
where its dependence on dense phishing clusters limits its effectiveness. 
In contrast, TLMG4Eth consistently outperforms both models by inte-
grating semantic and structural signals, ensuring more robust phishing 
detection across diverse datasets.

5.2. Ablation study of attribute similarity graph (RQ2)

When modeling the transaction semantics of an account, the basic 
BERT model can only consider the transaction sequence information 
of the input single account, and does not consider the semantic infor-
mation of other accounts. However, this global semantic information is 
crucial to gain insight into abnormal transactions and enhance the gen-
eralization ability of the model. Therefore, we introduce the transaction 
attribute similarity graph(TASG) into BERT to enhance the global 
awareness of the language model. In this section, we further explore 
the impact of the key component transaction attribute similarity graph 
in TLMG4Eth on the prediction performance of the model and conduct 
ablation experiments on it. We conduct experiments on three datasets 
respectively. The experimental results are presented in Fig.  5 and Table 
8 
4. NPMI represents that we use the normalized pointwise mutual infor-
mation to construct the TASG, and concatenate the features obtained 
by graph convolution with the semantic features extracted by BERT 
for deep Multi-Head Attention Network learning. TF-IDF means we 
use term frequency-inverse document frequency to build TASG; NPMI-
TFIDF means that we used both NPMI and TF-IDF composition; The 
notation ‘‘w/o’’ means that we do not introduce transaction attribute 
similarity information into the language model and only use pure BERT 
to extract features. These experiments are all done under the trade-off 
parameter 𝜆 = 0.7 and jointly training the model as GCN using edge 
features.

Overall, regardless of the method employed, the introduction of 
transaction attribute similarity graphs improved model performance. 
Notably, when using different methods to construct similar graphs, 
a lower threshold theta value between 0 to 0.4 will result in better 
performance of the model. This is because higher theta filters out 
most of the mutual information of words, reducing the structure of the 
vocabulary graph, making it difficult to obtain high-quality topological 
and similarity features through convolution of the vocabulary graph.

The model that incorporating the similarity information of trans-
action attributes extracted by TF-IDF features achieves the most sig-
nificant improvement. Compared with BERT without introducing any 
similarity information, it improves the F1 Scores by about 2.88%, 
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Table 5
Effect of varying trade-off parameter 𝜆 between TLM and AIG on model.
 𝜆 MulDiGraph B4E SPN

 Precision Recall F1 B-Acc Precision Recall F1 B-Acc Precision Recall F1 B-Acc  
 0 0.8918 0.8782 0.8849 0.9125 0.7648 0.8003 0.7820 0.8386 0.7856 0.8103 0.7972 0.8499  
 0.1 0.8788 0.8832 0.8810 0.9111 0.7741 0.8072 0.7903 0.8447 0.7949 0.8142 0.8040 0.8546  
 0.2 0.8964 0.8782 0.8872 0.9137 0.7963 0.7822 0.7892 0.8411 0.8174 0.7992 0.8082 0.8550  
 0.3 0.9014 0.8889 0.8951 0.9201 0.7716 0.8163 0.7933 0.8477 0.7923 0.8333 0.8123 0.8620  
 0.4 0.9000 0.8750 0.8873 0.9132 0.7702 0.8134 0.7912 0.8460 0.7910 0.8304 0.8102 0.8603  
 0.5 0.8974 0.8883 0.8929 0.9188 0.7875 0.7885 0.7878 0.8411 0.8127 0.8055 0.8091 0.8563  
 0.6 0.9028 0.9028 0.9028 0.9271 0.7445 0.8259 0.7830 0.8421 0.7693 0.8429 0.8044 0.8582  
 0.7 0.8919 0.9167 0.9041 0.9306 0.7824 0.7947 0.7885 0.8421 0.8033 0.8117 0.8075 0.8562  
 0.8 0.8904 0.9028 0.8966 0.9236 0.7817 0.8086 0.7949 0.8478 0.7821 0.8491 0.8142 0.8654  
 0.9 0.8767 0.8889 0.8828 0.9132 0.7676 0.8026 0.7847 0.8406 0.7712 0.8397 0.8040 0.8576  
 1 0.3172 0.8194 0.4574 0.4687 0.5742 0.7477 0.6495 0.7352 0.5742 0.7477 0.6495 0.7352  
2.98% and 2.35% in the MulDiGraph, B4E and SPN, respectively. The 
B-Acc index is improved by about 2.45%, 2.13% and 2.19%, respec-
tively. The other two methods NPMI and NPMI-TFIDF also have varying 
degrees of improvement compared with only using BERT, which shows 
that our method of integrating transaction attribute similarity features 
into the semantic features extracted by the language model effectively 
enhances the detection ability of the model.

One possible reason why TF-IDF improves the model more than 
NPMI and NPMI-TFIDF is that: TF-IDF is commonly used in NLP to 
measure the importance of terms in a document [51]. If a term appears 
many times in a document, but not many times in other documents, 
then this term is important to this document and conveys the key in-
formation of this document [52]. In the Ethereum transaction scenario, 
phishing accounts and their transaction records appear frequently in 
phishing scams, but account for a small proportion of the total transac-
tion information, so the TF-IDF value of the words involved in phishing 
in the transaction language will be higher, that is, these words can 
express key information of phishing accounts, which provides key 
global features for the language model. Thus, the global perception 
ability of the model is greatly improved.

NPMI-based methods focus on co-occurrence probabilities. NPMI 
can be understood as a pre-clustering of corpus information, where 
strongly correlated words are grouped together. If two words have 
a higher probability of co-occurrence in the trading language, they 
are more closely related and have a higher degree of association. In 
the scenario of normal account transactions in Ethereum, most of the 
transaction records structure are similar, and NPMI will pay more 
attention to the transaction semantics of normal accounts. Therefore, 
compared with TF-IDF information, the global similarity features of 
phising accounts provided by NPMI are limited.

5.3. Impact of the trade-off parameter (RQ3)

In this section, we discuss in detail the effect of the trade-off 
parameter 𝜆 of the language model TLM and GNNs model on the 
performance of the model in joint training. These experiments were 
done under TLM using NPMI as the similarity feature and GCN-e as 
the joint training model. When 𝜆 is close to 0, the model will be biased 
toward the prediction results of the language model to optimize the 
model. However, when 𝜆 is close to 1, the model will be biased toward 
the decision update model parameters of the GNNs model based on 
semantic embedding. We have proved through extensive experiments 
that the optimal trade-off parameters of the model on different datasets 
are different, which may be caused by the different distribution of the 
datasets. However, in general, the best performance of TLMG4Eth on 
each dataset occurs at high values of 𝜆, that is, when the contribution 
of GNNs model is relatively large, TLMG4Eth has better classification 
performance.

The specific experimental results are shown in Table  5. On the 
MuDiGraph, B4E and SPN datasets, the F1 Scores and B-Acc of the 
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model is the highest when 𝜆 is equal to 0.7, 0.8 and 0.8, respectively. 
The highest F1-Score was 90.41%, 79.49% and 81.42%. The highest 
B-Acc was 93.06%, 84.78% and 86.54%. Across all three datasets, the 
results of joint training outperform the cases where 𝜆 = 0 or 1. This 
indicates that joint training is more effective than using either approach 
independently. Taking the results on the MuDiGraph dataset as an 
example, when 𝜆 = 0.7, the F1 Scores and B-Acc of the model are 
improved by about 1.92% and 1.81% respectively compared with 𝜆 = 0, 
which shows that the introduction of the GNNs model for joint training 
effectively improves the classification performance of the model.

Although the model performs better when the trade-off parameter 
𝜆 is relatively high, this does not mean that increasing the weight 
of the GNNs model infinitely or even relying on the GNNs model to 
make the decision will lead to better performance. We compare the 
training loss curves of the model under different 𝜆. Fig.  6 shows that 
when 𝜆 is set to 0.9, compared with other 𝜆 values, the training loss 
of the model converges to a higher value. When 𝜆 is set to 1, the 
loss hardly decreases as training progresses, and the performance of 
the model degrades substantially, even on par with the performance 
of GCN in the baseline method. One possible reason is that when 
𝜆 is too high, the decision results dominated by GNNs have limited 
reference significance to TLM, and TLM cannot optimize the extraction 
of transaction semantic features in joint training. Moreover, TLM still 
updates the embeddings of intermediate transaction graph nodes with 
each round of training, which makes GNNs continue to receive lower-
quality semantic embeddings, ultimately making the overall model 
difficult to optimize. Our research proves that an appropriately high 
𝜆 value can well integrate the complementary advantages of language 
model and graph model in joint training, thus obtaining excellent 
performance.

5.4. Different GNN model combination (RQ4)

In this section, we explore the performance differences of various 
graph representation learning algorithms applied to AIG. We evalu-
ate four graph learning algorithms, each jointly trained with TLM, 
including: Graph Convolutional Network (GCN) without edge features, 
GCN with edge features (GCNe), Graph Attention Network (GAT), and 
GraphSAGE convolution (SAGEconv). For fair comparison, we set the 
number of conv layers to 2 for all GNNs, the number of heads for GAT 
to 8, and the aggregation operation of mean for SAGEconv. In addition, 
we adopt TF-IDF similarity graph enhancement of transaction attributes 
for TLM, and keep the rest Settings as default, and train for 50 epochs 
on three different datasets respectively.

The experimental results, presented in Table  6, demonstrate that 
GCNe, which incorporates edge features, achieves the best perfor-
mance on the three datasets. Compared to the standalone multihead 
attention network(MAN), the MAN + GCNe model shows significant 
improvements across all three datasets. Specifically, it enhances the 
F1 Scores by approximately 2.37%, 2.00%, and 1.28%, while the B-
Acc metric improves by about 2.06%, 1.56%, and 1.17% respectively. 



J. Sun et al. Information Fusion 120 (2025) 103074 
Fig. 6. Training Loss vs Epoch on MulDiGraph, B4E and SPN datasets with different trade-off parameter 𝜆.
Table 6
Performance of TLM combined with various GNN.
 Combination MulDiGraph B4E SPN

 Precision Recall F1 B-Acc Precision Recall F1 B-Acc Precision Recall F1 B-Acc  
 TLM Only 0.8827 0.8782 0.8804 0.9099 0.8002 0.7841 0.7923 0.8431 0.7980 0.8056 0.8018 0.8518  
 TLM+GCN 0.8667 0.9028 0.8844 0.9167 0.8074 0.7974 0.8027 0.8511 0.7905 0.8128 0.8015 0.8526  
 Improv. (%) −1.60 2.46 0.40 0.68 0.72 1.33 1.04 0.80 −0.75 0.72 −0.03 0.07  
 TLM+GAT 0.8767 0.8889 0.8828 0.9132 0.8086 0.7818 0.7949 0.8446 0.8107 0.7984 0.8045 0.8526  
 Improv. (%) −0.60 1.07 0.24 0.33 0.84 −0.23 0.26 0.15 1.27 −0.72 0.27 0.08  
 TLM+SAGE 0.8866 0.8731 0.8798 0.9086 0.8032 0.8037 0.8032 0.8526 0.7813 0.8182 0.7993 0.8518  
 Improv. (%) 0.39 −0.51 −0.06 −0.13 0.30 1.96 1.09 0.95 −1.68 1.26 −0.25 0.00  
 TLM+GCNe 0.8919 0.9167 0.9041 0.9306 0.8158 0.8087 0.8123 0.8587 0.7962 0.8339 0.8146 0.8636  
 Improv. (%) 0.92 3.85 2.37 2.06 1.56 2.46 2.00 1.56 −0.19 2.83 1.28 1.17  
This together with the experiment in RQ3 proves that our proposed 
TLM and AIG joint training method effectively improves the phishing 
account detection performance of the model. Notably, the SAGEconv 
and GCN models exhibit a considerable performance gap compared 
to GCNe in joint training, even diminishing the effectiveness of MAN. 
This may be due to the failure of the model to model the relationship 
between nodes and their neighbors, and the graph convolution opera-
tion does not assign different weights according to the importance of 
nodes, so that nodes will aggregate useless or even interfere with the 
features of account classification, and ultimately affect the classification 
performance.

Although GAT captures the relationship and feature relationship be-
tween nodes and their neighbors through the self-attention mechanism, 
it only relies on the connection relationship between nodes to calculate 
the self-attention coefficient to assign weights to neighbors, rather than 
explicitly using edge features [53,54]. In the context of the Ethereum 
transaction network being a sparse network, this feature that GAT relies 
on node connectivity makes it more difficult to accurately capture the 
connections between nodes. In contrast, GCNe using edge features ex-
plicitly models the weights between nodes and their neighbors based on 
Ethereum transaction records, uses edge features to aggregate messages 
from limited neighbors in sparse graphs, and successfully combines 
transaction semantic information and network topology information, 
thereby achieving excellent performance.

6. Limitation

While TLMG4Eth demonstrates significant improvements in Ethere-
um fraud detection, several limitations persist that should be acknowl-
edged and addressed in future research:

Data Temporal Coverage: The SPN dataset used focuses on phish-
ing patterns up to June 2024, limiting the model’s adaptability to 
emerging fraud tactics. A more longitudinal dataset could improve 
generalizability and robustness.

Computational Complexity: The integration of 12-layer Trans-
formers with GCNs introduces significant computational overhead, par-
ticularly for memory-intensive attention mechanisms. This poses scala-
bility challenges for real-time detection, especially given the large scale 
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of Ethereum’s transaction network. Optimization strategies are needed 
for large-scale deployment.

Semantic Drift Risk: The static pre-training of the TLM model may 
lead to outdated semantics as phishing tactics evolve. Without dynamic 
learning to adapt to new tactics, the model may struggle to detect novel 
fraud types over time.

Multi-chain Generalization: Our approach is tested only on Ethere-
um, limiting its applicability to other blockchains, such as Bitcoin. 
Future work could explore methods to generalize the model across 
different blockchain structures.

7. Conclusion

In this paper, we introduced TLMG4Eth, a novel approach that 
integrates transaction language models with graph-based methods to 
capture semantic, similarity, and structural features of transaction data 
in Ethereum. Our work represents the first attempt to utilize language 
models to address the issue of unclear transaction semantics, and 
we pioneered the modeling of transaction similarity. After using an 
attention network to fuse semantic and similarity information, we 
proposed the construction of an account interaction graph to capture 
the structural information of the account transaction network. Fur-
thermore, we developed a method for jointly training the attention 
network and the account structure graph to integrate information from 
all stages. Our approach has demonstrated significant improvements, 
achieving performance gains of approximately 10% or more across 
three datasets compared to the current state-of-the-art methods. These 
empirical results provide strong evidence for the effectiveness of our 
proposed methodology, highlighting the potential of combining linguis-
tic, semantic, and structural analysis in blockchain analytics and fraud 
detection. As part of interesting future work, we plan to explore a wider 
range of transaction semantic language models, improve pre-training 
objectives, and study more effective fusion networks for fraud detection 
tasks on other blockchains.
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