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Dynamic Feature Fusion: Combining Global Graph
Structures and Local Semantics for Blockchain

Phishing Detection
Zhang Sheng*, Liangliang Song*, Yanbin Wang†

Abstract—The advent of blockchain technology has facilitated
the widespread adoption of smart contracts in the financial
sector. However, current phishing detection methodologies ex-
hibit limitations in capturing both global structural patterns
within transaction networks and local semantic relationships
embedded in transaction data. Most existing models focus on
either structural information or semantic features individually,
leading to suboptimal performance in detecting complex phishing
patterns. In this paper, we propose a dynamic feature fusion
model that combines graph-based representation learning and
semantic feature extraction for blockchain phishing detection.
Specifically, we construct global graph representations to model
account relationships and extract local contextual features from
transaction data. A dynamic multimodal fusion mechanism is
introduced to adaptively integrate these features, enabling the
model to capture both structural and semantic phishing patterns
effectively. We further develop a comprehensive data process-
ing pipeline, including graph construction, temporal feature
enhancement, and text preprocessing. Experimental results on
large-scale real-world blockchain datasets demonstrate that our
method outperforms existing benchmarks across accuracy, F1
score, and recall metrics. This work highlights the importance
of integrating structural relationships and semantic similarities
for robust phishing detection and offers a scalable solution
for securing blockchain systems. Our code is available at
https://github.com/dcszhang/Dynamic_Feature

Index Terms—Blockchain, Fraud Detection, Multimodal Fu-
sion, Security

I. INTRODUCTION

BLOCKCHAIN technology has developed rapidly in re-
cent years and has triggered far-reaching changes in

several fields, especially in the financial industry [1]. However,
as the popularity of blockchain applications grows, so does
the significant increase in fraudulent behaviors it has brought
about, with serious implications for society [2]. Blockchain
technology, due to its decentralization and transparency, has
become a tool for unscrupulous individuals to exploit, al-
though it provides greater security and efficiency in financial
transactions [3]. For example, the application of blockchain
technology in the supply chain is seen as an effective means
to enhance transparency and traceability, but it also faces
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a crisis of social trust due to fraudulent behavior [4]. In
addition, the increase in fraudulent and illegal activities poses
new challenges to the global economy as blockchain expands
and its applications grow, especially in high-risk financial
transactions [5]. Therefore, despite its enormous potential,
blockchain technology comes with social and regulatory issues
that need to be addressed to ensure its safe and sustainable
development [6].

Phishing detection in Ethereum has long relied on Graph
Neural Networks (GNNs) [7] to model fund flows in transac-
tion graphs. While these methods [8] leverage graph structure
learning to capture transaction topologies, the binary nature
of transaction relationships and GNN’s neighbor sampling
strategy (presence/absence) fail to extract individual account-
level behavioral patterns, such as periodic transfers, fixed
counterparty preferences, or transaction bursts in specific time
windows. Recent approaches using contextual modeling of
account transaction sequences via sequence models (e.g.,
Transformer, LSTM) capture transaction context from full
records, addressing the limitations of graph-based methods
but missing topological information. In addition, the current
research lacks insights into two key aspects:

1) Local semantic similarity information: In blockchain
transaction data, legitimate and phishing accounts show
distinct local patterns. Normal accounts exhibit ran-
dom behavior—infrequent transactions with irregular
amounts and intervals, resulting in weak semantic cor-
relations. Phishing accounts, however, display consistent
patterns—frequent transactions in short bursts, with sim-
ilar amounts or repetitive actions, driven by automated
fraud to move funds or obscure trails. Current detection
methods struggle to capture these local semantic similar-
ities, limiting their accuracy in identifying fraud.

2) Global transaction account network information:
Phishing accounts and legitimate accounts exhibit sig-
nificant network structural differences. Legitimate ac-
counts typically have forming sparsely connected network
structures with minimal clustering. Phishing accounts,
often create high-density subnetworks. These structural
anomalies (tightly connected node clusters, localized high
connectivity, sudden interaction spikes) serve as impor-
tant indicators for identifying phishing behavior.

Integrating useful information is a highly promising di-
rection to address the above issues [9]. In this study, we
propose a deep learning framework with multimodal fusion
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for fraud detection in blockchain transaction data. Compared
with traditional methods, the proposed approach effectively
captures both global structural relationships in transaction
networks and local semantic patterns embedded in transaction
records, achieving higher accuracy and robustness in detecting
complex fraud behaviors.

Specifically, we first construct a global account interaction
graph to represent the relationships between blockchain trans-
action accounts. Each node in the graph corresponds to an
account, while the edges capture the transaction behaviors,
such as frequency, transaction value, and temporal patterns.
To extract meaningful structural features from this graph, we
employ graph-based representation learning, which aggregates
information from neighboring accounts to capture both direct
and indirect relationships within the transaction network. This
step enables the model to uncover global interaction patterns
that are indicative of fraudulent behaviors.

Simultaneously, we process the semantic information em-
bedded in transaction data using a pre-trained text repre-
sentation model. The model converts textual descriptions,
such as transaction amounts, smart contract details, and other
metadata, into high-dimensional feature vectors. This process
allows the model to identify local contextual relationships,
such as recurring transaction patterns or anomalous textual
characteristics associated with suspicious accounts.

To effectively leverage both structural and semantic insights,
we propose a dynamic feature fusion mechanism that adap-
tively integrates these two feature spaces. The mechanism
learns to balance global network structures and local trans-
action semantics based on their relative importance for each
transaction, enabling the model to detect subtle and complex
fraud patterns with high accuracy.

By combining these complementary perspectives—global
structural relationships and local semantic features—our ap-
proach significantly improves the robustness and precision of
fraud detection. Experimental results on real-world blockchain
datasets demonstrate that the proposed ETH-GBERT model
achieves state-of-the-art performance. Specifically, on the
Multigraph dataset, the model achieved an F1 score of
94.71%, significantly outperforming the best-performing base-
line (Role2Vec, F1 score of 74.13%), with an improvement of
20.58%. On the Transaction Network dataset, ETH-GBERT
achieved an F1 score of 86.16%, representing a substantial
enhancement over the next best model (Role2Vec, F1 score of
71.39%) , improving by 14.77%. Similarly, on the B4E dataset,
ETH-GBERT obtained an F1 score of 89.79%, surpassing the
highest baseline performance (Role2Vec, F1 score of 74.25%)
by 15.54%. Additionally, the proposed model demonstrated
superior recall (89.57%) and precision (90.84%), further high-
lighting its robustness in identifying phishing accounts. These
results highlight the model’s effectiveness in capturing com-
plex fraud patterns, its robustness in handling imbalanced data
distributions, and its ability to integrate structural and semantic
features dynamically.

The main contributions of this study are as follows:

1) A dynamic multimodal fusion model is proposed, which
innovatively combines graph structure information with

text semantic similarity information to enhance the fraud
detection performance in blockchain smart contracts.

2) A complete set of data processing flow is developed,
including the extraction of transaction data, the generation
of adjacency matrix, and the processing of text repre-
sentation based on BERT [10], which provides a useful
reference for other blockchain applications.

3) The effectiveness of the proposed method is verified
through experiments, and the results show that the method
performs well in detecting complex frauds and signifi-
cantly outperforms existing benchmark models.

II. RELATED WORK

In recent years, with the rapid development of blockchain
technology, the frequent occurrence of fraud in blockchain
networks has become a global challenge. Researchers and
developers have developed various fraud detection methods to
address these challenges and ensure the security and reliability
of blockchain systems [11]. This section reviews existing
phishing fraud methods, focusing on their technological in-
novations and limitations.

A. Graph-based Fraud Detection
In blockchain networks, transaction data usually has a com-

plex relational structure, and graph-based models can effec-
tively capture these complex relationships and excel in fraud
detection. Especially in blockchain platforms like Ethereum,
Graph Neural Networks (GNNs) are widely used to detect
fraud. For example, Tan [12] proposed a model based on
Graph Convolutional Networks (GCNs) for detecting fraud
from Ethereum transaction records. They classified addresses
as legitimate or fraudulent by constructing a transaction net-
work and extracting node features. In addition, Kanezashi
[13] investigated the application of Heterogeneous GNNs in
Ethereum transaction networks, focusing on handling large-
scale networks and the label imbalance problem. Li [14]
also proposed a phishing detection framework called PDGNN,
based on the Chebyshev-GCN, which can detect fraud in
Ethereum transaction networks by extracting transaction sub-
graphs and training a classification model, effectively distin-
guishing normal accounts from phishing accounts in large-
scale Ethereum networks. Wang [15] proposed the Transaction
SubGraph Network (TSGN) framework to enhance phishing
detection in Ethereum by constructing transaction subgraphs
that capture essential features of transaction flows. Hou [16]
proposed an Ethereum phishing detection method based on
GCN and Conditional Random Field (CRF). This method first
utilizes DeepWalk to generate initial features for each account
node in the transaction graph, then employs GCN to learn
graph-structured representations, capturing the transactional
relationships between accounts. To enhance classification per-
formance, a CRF layer further encourages similar nodes to
learn similar representations.

B. Fraud Detection Based on Time Series Data
Time series data analysis plays an important role in

blockchain fraud detection, especially in processing transac-
tion records and detecting abnormal behaviours. Ethereum, as
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one of the major blockchain platforms, contains a large amount
of time-series information, such as transaction time, frequency,
and value fluctuations, which can be used to identify potential
fraudulent behaviours. Hu [17] investigated the application of
time-series analysis methods based on the Long Short-Term
Memory (LSTM) network in Ethereum smart contracts. An-
other study by Farrugia [18] proposed the use of the XGBoost
model combined with time series features for illegal account
detection in Ethereum. The study highlighted the importance
of time series features, such as time intervals, in identifying
illegal accounts by extracting key time series features and
combining them with a machine learning model. Pan [19]
proposed a system called EtherShield, which combines time
interval analysis and contract code features to detect malicious
behaviour on the Ethereum blockchain.

C. Hybrid Methods

Hybrid methods integrate various types of information, such
as graph data, time-series data, and semantic information,
achieving higher detection accuracy and robustness, effectively
identifying complex and dynamic fraud patterns in Ethereum
malicious transaction detection [20]. Li [21] proposed the
Temporal Transaction Aggregation Graph Network (TTAGN)
for Ethereum phishing detection, utilizing temporal transac-
tion data to improve accuracy. TTAGN combines temporal
edge representation, edge-to-node aggregation, and structural
enhancement to capture transaction patterns and network struc-
ture, outperforming existing methods on real-world datasets.
Wen [22] proposed a hybrid feature fusion model named
LBPS for phishing detection on Ethereum, combining LSTM-
FCN and BP neural networks. This model integrates features
extracted through manual feature engineering and transaction
records analysis, using BP neural networks to capture hidden
relationships between features and LSTM-FCN networks to
extract temporal features from transaction data. Chen [23]
proposed the DA-HGNN model, a hybrid graph neural network
with data augmentation for Ethereum phishing detection. This
model utilizes data augmentation to address sample imbalance,
integrates Conv1D and GRU-MHA to extract temporal fea-
tures, and employs SAGEConv to capture structural features
from the transaction graph.

Compared with the models reviewed above, our proposed
ETH-GBERT model provides distinct advantages. Unlike
purely graph-based models (such as GCN [7] or GAT [24]),
ETH-GBERT incorporates rich textual transaction semantics,
enabling it to detect phishing accounts that might not form
clear structural patterns. Meanwhile, compared with text-only
models such as BERT4ETH [25], our model leverages the
global structural information provided by the graph embed-
dings to enhance detection of complex interaction patterns
not identifiable through semantics alone. Although existing
hybrid approaches (e.g., TTAGN [21], LBPS [22]) also com-
bine multiple feature types, ETH-GBERT uniquely employs
a dynamic fusion mechanism, adaptively weighting semantic
and structural information depending on input complexity,
which significantly improves robustness and flexibility in
heterogeneous blockchain environments.

III. METHODOLOGY

In this chapter, we describe in detail a dynamic multimodal
fusion approach for blockchain transaction data fraud detec-
tion. The proposed method integrates graph-based representa-
tion learning to capture global relationships within transaction
networks and semantic feature extraction to identify local
contextual patterns from transaction records. By leveraging
a dynamic feature fusion mechanism, the model effectively
combines structural and semantic information to enhance its
ability to detect complex fraud behaviors, as illustrated in Fig-
ure 1. This chapter includes the detailed steps of our approach,
starting with data generation and preprocessing, followed by a
comprehensive explanation of the model architecture and the
training process used to optimize performance.

A. Data generation and pre-processing

In the processing of blockchain transaction datasets, each
transaction record typically contains several fields, such as
tag, from_address (sender address), to_address (re-
cipient address), value (transaction value), and timestamp
(transaction timestamp). These fields describe the transaction
behavior, the time it occurred, and the parties involved. To
more effectively analyze and model transaction relationships,
we need to properly classify and reorganize the transaction
data.

Specifically, we classify all transaction data by sender and
recipient addresses, constructing a transaction record structure
based on accounts. This classification step not only simplifies
transaction storage and access but also lays the foundation
for subsequent graph structure construction and local semantic
analysis.

Each transaction contains two account addresses, the
sender (from_address) and the recipient (to_address).
We classify transactions based on the sender’s address
(from_address), treating it as the transaction record of
an account. Each transaction is labeled as an "outgoing"
transaction, with the field in_out = 1. Similarly, when
an account is the recipient, the transaction is labeled as an
"incoming" transaction, with the field in_out = 0.

The classified transaction records are stored in a dictionary
accounts, where the keys are account addresses and the val-
ues are lists of all transaction records for that account. Each list
associated with an account contains all outgoing and incoming
transactions related to that account. In this way, by separating
and indexing transaction records by account, we can quickly
retrieve the transaction history of any account, especially when
analyzing account behavior patterns or transaction frequency.

1) Time Aggregation Feature Enhancement: To improve the
information expression capability of transaction data in the
time dimension, we particularly focus on the time aggrega-
tion characteristics of transactions during the data generation
and preprocessing stages. By enhancing the time aggregation
features, we can effectively capture some potential abnormal
account behaviors, especially those accounts that engage in a
large number of fund transactions within a short period [26].
These behaviors are often typical characteristics of phishing
accounts, so analyzing and utilizing information in the time
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Fig. 1. Architecture of the Dynamic Feature Fusion Model for Blockchain Phishing Detection.
(Note: This figure has been revised in response to reviewer comments.)

dimension is crucial for accurately detecting fraudulent activ-
ities.

When processing the transaction data of each account, we
first sort the transaction records based on the timestamp. The
purpose of sorting is to ensure that the subsequent time differ-
ence calculations reflect the actual order of the transactions,
providing foundational support for time aggregation features.
By sorting the transactions in chronological order, we can
capture the flow of funds in an account over a specific period
and further analyze the frequency and density of its transaction
behavior.

To quantify the degree of frequent transactions in a short
time, we introduce the n-gram time difference feature. Specifi-
cally, the n-gram time difference measures the compactness of
transaction times by calculating the time difference between a
transaction and the previous n− 1 transactions. We calculate
the time differences for 2-gram to 5-gram, with the formula
as follows:

∆Tn = Ti − Ti−(n−1)

where ti denotes the timestamp of the ith transaction and
ti−(n−1) denotes the timestamp of the i−(n−1)th transaction
for the account. If the number of transactions is not sufficient
to calculate the n-gram, the time difference is set to 0.

The n-gram time difference feature allows us to capture
patterns of frequent trading over short periods. For example,
if an account makes multiple inbound and outbound trades
within a few minutes, the n-gram time difference will be
significantly smaller, and this temporal aggregation reflects the
account’s high frequency of trades over a short period, which
is often closely associated with phishing behavior.

2) Graph Data Generation: To effectively capture the inter-
account relationships in blockchain transaction data, we first
construct a graph-based data structure to represent the trans-
action network. In this section, we use an adjacency matrix

A to quantify the connection weights between accounts in
the transaction network. The process of generating this graph
representation involves the following steps:

1) Creating the Zero Matrix
We first create a n× n zero matrix A, where n denotes
the number of unique account addresses. This adjacency
matrix is used to store the connection weights between
different accounts. The elements of the matrix A[i, j]
denote the transaction weights between account i and
account j.

A = 0n×n

2) Traversing Transaction Records
In order to populate the elements of the adjacency
matrix, we need to iterate through all the transaction
records Tk, where each transaction Tk contains a sender
from_addressk and a receiver to_addressk. We use an
"address_to_index" dictionary to map these account ad-
dresses to indices in the adjacency matrix.
• The sender address is mapped as from_idx
• The receiver address is mapped as to_idx
The formulaic representation is as follows:

from_idx = address_to_index(from_addressk)

to_idx = address_to_index(to_addressk)

3) Calculating Transaction Weights

The weight of each transaction wk reflects both the
transaction value and the temporal characteristics of the
transaction behavior. To effectively capture temporal fea-
tures, we propose a weight calculation method based on
the n-gram time differences. Specifically, the weight of a
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transaction wk is computed as a weighted sum of the n-
gram time differences (∆Tn). The formula for calculating
the weights is defined as follows:

wk = valuek ×

(
N∑

n=1

αn ·∆Tn

)
(1)

where:
• ∆Tn denotes the n-gram time difference as previously

defined, i.e., ∆Tn = Ti − Ti−(n−1), representing the
time interval between the i-th transaction and the (i−
(n− 1))-th transaction.

• αn represents the weighting coefficients corresponding
to different n-gram time differences. In our experi-
ments, we empirically set these weights as inversely
proportional to the n-gram order to emphasize shorter-
term transaction bursts:

αn =
1/n∑N

j=1(1/j)
(2)

where N is the maximum n-gram considered (in our
experiments, N = 5).

In addition, the transaction value valuek is also an impor-
tant component of the weights, which we combine with
the n-gram time difference to further adjust the weights
of the transactions:

wk = valuek ·

(
N∑

n=1

αn ·∆tn,k

)
(3)

4) Populating the Adjacency Matrix

Once the weights of the transactions wk are computed,
they are accumulated to the corresponding positions in
the adjacency matrix A[from_idx, to_idx]. Specifically, if
multiple transactions occur between the same pair of ac-
counts, their weights are summed up. This accumulation
can be mathematically expressed as:

A[from_idx, to_idx] =
∑

k∈T (from_idx,to_idx)

wk

where T (from_idx, to_idx) denotes the set of all trans-
actions from account from_idx to account to_idx. Thus,
the adjacency matrix entry reflects both the total fre-
quency and aggregate transaction values between the two
accounts.

This operation ensures that when multiple transactions occur
between two accounts, the corresponding weights are accumu-
lated in the appropriate elements of the adjacency matrix. This
accumulation process effectively reflects both the frequency
of transactions and the aggregate transaction values between
accounts. The resulting adjacency matrix A serves as the input
for graph-based representation learning, enabling the model to
capture and analyze the global structural relationships within
the transaction network.

In practice, the "address_to_index" dictionary size depends
on the scale of the blockchain dataset under analysis, typically
ranging from tens of thousands to millions of unique account

addresses, especially when dealing with large blockchain net-
works like Ethereum. When new accounts emerge in real-
time, they can be incrementally assigned new indices and
appended to this dictionary. Consequently, the adjacency
matrix needs to be dynamically updated by expanding its
dimensions to accommodate these new accounts and their
transactions. However, such dynamic updates may pose chal-
lenges in computational efficiency, as frequently resizing large
adjacency matrices can be resource-intensive. Therefore, the
proposed method, in its current form, primarily targets offline
or batch analysis scenarios. For real-time phishing detection,
additional optimization strategies, such as incremental graph
updates, approximate adjacency structures, or streaming graph
techniques, would be necessary.

3) Text Transaction Data Generation: In the transaction
records of each account, the from_address, to_address and
timestamp fields record the address information and times-
tamp of the account. Although these fields are important for
transaction classification and temporal feature enhancement,
they are not needed in text analysis, so we delete these fields
before generating text data to simplify the data structure and
retain key information such as transaction value and label.

Recent studies have shown that Transformer-based models,
such as BERT, can also benefit from training with randomly or
arbitrarily ordered sequences [27]. We take advantage of this
property by randomly rearranging the transaction list for each
account. This operation disrupts the backward and forward
order of transactions, allowing the model to focus on the
content features of transactions rather than time-dependent
information, thus avoiding possible noise interference.

For example, the list of trades for account A is
[T1, T2, T3] before disruption, and after random disruption may
become[T2, T1, T3].

Next, we tag each account with an overall tag. An account
is labelled as fraudulent whenever there is a transaction in
the account with tag = 1, i.e., the account is labelled with
a tag of 1. This tag is given to the first transaction record
of the account. To simplify the transaction logging, the tag
information for the rest of the transactions is deleted and only
the tag of the first transaction is retained. This is because
even if only one transaction in the account is related to
fraud, the account itself may be potentially risky and may
even be used for wider fraudulent activity. Typically, phishing
accounts tend to mask their malicious behaviour by disguising
multiple normal transactions. Therefore, in order to ensure the
security and effectiveness of fraud detection, we have adopted
more stringent criteria to ensure that the model can identify
potentially high-risk accounts and prevent them from engaging
in further illegal transactions. This labelling approach can help
the model learn the risk characteristics of the accounts more
accurately and improve the overall detection effectiveness.

When generating text data, we process the transaction
records of each account and convert them into a single line of
descriptive text. The key fields of each transaction (e.g., label
tag, transaction value, etc.) are combined to create a compact
textual representation that encapsulates the transaction infor-
mation for the corresponding account. This step produces the
raw text corpus, which serves as input for subsequent semantic
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TABLE I
FEATURE EXTRACTION AND TSV REPRESENTATION SUMMARY

Field Description Example Value

tag Phishing label (1) / legitimate (0) 1
value Transaction amount transferred 5.06854256
in_out Transaction direction (1:out, 0:in) 1
2-gram Time delta: current vs. t-1 (sec) 30 (seconds)
3-gram Time delta: current vs. t-2 (sec) 90 (seconds)
4-gram Time delta: current vs. t-3 (sec) 120 (seconds)
5-gram Time delta: current vs. t-4 (sec) 300 (seconds)

TSV format example:
tag=1, value=5.0685, in_out=1, 2-gram=30, ...

feature extraction through a pre-trained text representation
model. The format can be clearly illustrated by a concrete
example:

Phishing Account Example: tag=1, value=5.0685,
in_out=1, 2-gram:30, 3-gram:60, 4-gram:90,
5-gram:120; value=3.7451, in_out=0,
2-gram:30, 3-gram:60, 4-gram:90,
5-gram:120;

Normal Account Example: tag=0, value=0.0340,
in_out=1, 2-gram:0, 3-gram:0, 4-gram:0,
5-gram:0;

In these examples, the initial tag number represents the
account-level label (1 for phishing, 0 for legitimate), while
the subsequent data represent transaction records presented
in a randomly permuted order, where each account-level
instance may encompass multiple individual transactions. This
simplified representation allows the model to learn semantic
patterns from transaction values without overfitting to temporal
order or position-specific biases.

The generated textual transaction dataset is partitioned in
the ratio of 80% training set, 10% validation set, and 10%
test set. This data partitioning ensures that the model can learn
enough features during the training process as well as perform
performance tuning with the validation set, while verifying the
model’s generalisation ability on the test set.

4) Summary of Extracted Features and TSV Representation:
To clearly illustrate the features extracted and included in
the final transaction representation used in our experiments,
we provide a detailed summary in Table I. Each row in the
final TSV file corresponds to one blockchain account, with
transaction information concatenated as textual descriptions.

This explicit representation facilitates semantic modeling
using Transformer-based approaches, as transactions are en-
coded as textual sequences reflecting both their numeric and
temporal attributes.

5) Text Data Cleaning: After generating the textual trans-
action data, further pre-processing steps are applied to ensure
compatibility with the input format required for the down-
stream semantic representation model. These steps include
reading the generated TSV files, tokenizing the text into
subword units, and transforming it into a format suitable for
deep learning-based training.

We first read the generated train.tsv and dev.tsv files, which
contain the processed training set and validation set data. To
ensure that the models are exposed to diverse data distributions

during training, we randomly disrupt the data order to avoid
overfitting the models to a specific data order. In addition, the
test set data was read from test.tsv and similarly randomly
disrupted.

After reading and shuffling the data, the training, validation,
and test sets were combined into a unified data frame. From
this, two key columns were extracted: the transaction text
description (corpus) and the account label (y). The transaction
text description captures the account’s transaction behavior,
while the label indicates whether the account is associated with
fraudulent activity. This operation produces the input corpus
and the corresponding supervisory signals (labels) required for
subsequent semantic feature extraction and model training.

The textual corpus is then tokenized into subword units
using BERT’s WordPiece tokenizer. During this tokenization
process, tokens are normalized by converting all characters
to lowercase and applying standard Unicode normalization
(NFKC), following the original BERT preprocessing recom-
mendations [10]. This normalization ensures consistent token
representations, reducing vocabulary redundancy and improv-
ing model efficiency. Subsequently, tokenized sequences are
converted into token IDs, which serve as inputs to the embed-
ding layer of the text processing model for subsequent training.
To ensure robustness, the order of documents is intentionally
shuffled, exposing the model to unordered and varied inputs
during training. Additionally, the labeled data y is aligned with
the tokenized sentences and used as supervisory signals for the
supervised learning process.

This was followed by a tokenization process to segment
each document into a series of tokens (sub-word units),
which were then normalized and encoded as necessary. This
step ensures that the transaction text is transformed into a
format suitable for semantic representation models, resulting in
sequences of token IDs. These token IDs serve as inputs to the
embedding layer of the text processing model for subsequent
training. To ensure robustness, the order of documents is
intentionally shuffled, exposing the model to unordered and
varied inputs during training. Additionally, the labeled data y
is aligned with the tokenized sentences and used as supervisory
signals for the supervised learning process.

The dataset generated in the above steps contains global
transactional relationships and local transactional semantic
information, providing multimodal input for subsequent model
training.

B. ETH-GBERT Model Architecture
To address the challenge of detecting complex fraudulent

activities in blockchain transactions, we propose the ETH-
GBERT Model, a deep learning framework designed to si-
multaneously capture global structural relationships and local
semantic similarities. While transaction networks contain rich
global patterns that reflect account interactions, transaction
records hold local contextual details that can signal fraudulent
behaviors. Existing methods often focus on one aspect, failing
to leverage the complementary strengths of both.

In this study, we adopt Graph Convolutional Networks
(GCNs) to capture the global transaction relationships embed-
ded in account interaction graphs. GCNs are particularly suited
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for extracting structural features from graph-based data, mak-
ing them ideal for modeling the relationships in blockchain
transaction networks. Simultaneously, we use a pre-trained
BERT model to analyze the local semantic features present
in transaction text data, effectively capturing the contextual
meaning and subtle patterns in transaction details.

By integrating these two components through a multimodal
fusion mechanism, the ETH-GBERT Model combines in-
sights from both global structural features and local semantic
representations to enhance fraud detection performance. The
following sections provide a detailed explanation of the archi-
tecture and design of the ETH-GBERT Model components.

1) Model Architecture: The ETH-GBERT model integrates
two core modules: a GCN module for transaction account
graphs and a BERT module for textual transaction data.
Specifically, we use the following architectural configurations:

• BERT component: Pre-trained BERT-base model com-
prising 12 transformer encoder layers, with a hidden size
of 768 and 12 attention heads.

• GCN component: A two-layer Graph Convolutional
Network, with each layer having a hidden dimension size
of 128.

• Gating network: The architecture employs a two-layer
multilayer perceptron (MLP) with a hidden dimension-
ality of 128 and ReLU activation, which adaptively
generates a probability vector to determine the relative
contribution weights of each perspective within the fused
multimodal embedding representation.

The overall model structure can be divided into the follow-
ing parts:

i. Graph-Based Representation Module: Primarily cap-
tures global relationships within the transaction network.
Through the GCN layers, the relationships between trans-
action accounts are convoluted, generating node embed-
dings (account embeddings) with global semantic infor-
mation.

ii. Semantic Feature Extraction Module: Extracts local
semantic information from transaction text data. The
BERT model deeply represents the transaction records
for each account and generates high-dimensional text
embeddings.

iii. Multimodal Fusion: The GCN-generated global account
embeddings and BERT-produced local text embeddings
are fused, forming a multimodal embed vector. This
fusion enables the model to take advantage of both the
transaction network structure and the text features for
fraud detection.

iv. Classifier: The fused embedding vector is passed through
a fully connected layer for classification, outputting pre-
dictions to determine whether the account is related to
fraudulent behavior.

2) Graph-Based Representation Module Design: Adja-
cency Matrix Input. The input to the GCN module is the
adjacency matrix A of the transaction account graph, where
the element A[i, j] represents the transaction weight between
the account i and the account j. This adjacency matrix

is obtained from the graph data generation steps described
earlier, incorporating transaction amounts and time features.

Graph Convolution Layer (GCN Layer). In the GCN module
[7], the transaction account graph undergoes feature extraction
through multiple graph convolution layers. The convolution
operation in each layer is represented by the following for-
mula:

H(l+1) = σ
(
D̃− 1

2 ÃD̃− 1
2H(l)W(l)

)
(4)

where:
• H(l) represents the node feature matrix at the l-th layer

(account embedding matrix), and the initial H(0) is the
initial feature of the transaction accounts;

• Ã = A+ I is the adjacency matrix with self-loops;
• D̃ is the degree matrix of the adjacency matrix;
• W(l) is the weight matrix at the l-th layer;
• σ is a non-linear activation function, such as ReLU.
Through multiple convolution operations, the model aggre-

gates the global information of the transaction network layer
by layer, eventually generating node embeddings with global
transaction relationships.

3) Semantic Feature Extraction Module Design: Text In-
put and Initial Embeddings. The input to the BERT module
is the transaction text data. After being cleaned and tokenized,
the text data is converted into token sequences. These token
sequences are embedded using BERT’s Word Embedding,
Position Embedding, and Token Type Embedding layers [10]:

EBERT = Eword +Eposition +Etoken_type (5)

Fusion with Graph Embeddings. Before being processed
by the Transformer encoder, the embeddings from BERT
(EBERT) are dynamically fused with graph-based embeddings
to produce fused embeddings (EFused). The detailed fusion
mechanism and its adaptive weighting strategy are elaborated
in the next subsection (III-B4).

BERT Encoding Layer. The fused embeddings EFused are
then passed through BERT’s multi-layer Transformer encoder,
generating higher-level representations. Formally, this encod-
ing step is defined as:

Hfusion = TransformerEncoder(EFused) (6)

The resulting Hfusion serves as input to the final classification
module.

4) Multimodal Fusion: In the multimodal fusion stage of
the model, we introduce a dynamic feature fusion mecha-
nism inspired by DynMM [28], which adaptively determines
the contributions of BERT and GCN embeddings for each
input instance.

Fusion Strategy. Our approach employs a gating network
G(x) to generate instance-specific fusion weights. This allows
the model to dynamically decide how much information to
extract from the existing embeddings. Specifically, three fusion
strategies are considered:

• BERT-only embeddings EBERT: Using textual informa-
tion exclusively for prediction.
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• GCN-enhanced BERT embeddings EGCN_Enhanced: GCN
embeddings that integrate structural graph information
and are enhanced with contextual features from BERT.

• A weighted combination of BERT and GCN embed-
dings:

EFusion = α · EBERT + (1− α) · EGCN_Enhanced (7)

where α is a learnable parameter initialized to 0.5.
Dynamic Weight Calculation. The gating network G(x)

takes as input the concatenated features [EBERT,EGCN_Enhanced]
and outputs fusion weights g = [g1, g2, g3] corresponding to
the three fusion strategies:

gi =
exp ((logG(x)i + bi)/τ)∑3

j=1 exp ((logG(x)j + bj)/τ)
, i ∈ {1, 2, 3} (8)

where bi ∼ Gumbel(0, 1) is Gumbel noise, and τ is
the temperature parameter controlling the sharpness of the
resulting probability distribution. Specifically, when τ is large,
the output distribution becomes smoother and approaches a
uniform distribution, resulting in more balanced or equal
weighting across the three fusion strategies. Conversely, as
τ decreases, the distribution sharpens, eventually approaching
a one-hot distribution that strongly favors a single fusion
strategy. In practice, we adjust τ to find an optimal balance
between exploration (balanced fusion) and exploitation (selec-
tive fusion), enhancing the adaptability of our dynamic fusion
mechanism.

To handle varying task complexities and data characteristics,
the gating network G(x) can be implemented using different
architectures, such as Multi-Layer Perceptrons (MLPs), Trans-
former layers, or convolutional networks.

In this work, we implement the gating network as a Multi-
Layer Perceptron (MLP), consisting of two fully connected
layers with a ReLU activation function.

The final fused embedding EFused is obtained as:

EFused = g1 · EBERT + g2 · EGCN_Enhanced + g3 · EFusion (9)

Adaptive Fusion Mechanism. This dynamic fusion mecha-
nism enables the model to adapt its computational resources
and fusion strategy based on the input complexity:

• For easy inputs, the gating network assigns higher
weights to simpler strategies such as EBERT or
EGCN_Enhanced, reducing computational costs.

• For complex inputs, the gating network increases the
contribution of the weighted combination EFusion, allow-
ing the model to effectively integrate information from
both modalities.

Although the fusion mechanism introduces additional com-
putational costs, our experiments demonstrate that the training
time remains manageable. For instance, when early stopping
is disabled, the ETH-GBERT model requires approximately
19 minutes per epoch—totaling 12.5 hours (754 minutes) for
40 epochs. Notably, the model reached its peak validation
weighted F1-score (94.565%) by the 4th epoch as shown in
Figure 2, after which performance metrics stabilized. Given
the substantial performance gains—evidenced by significantly

Fig. 2. Training Dynamics of ETH-GBERT with Early Stopping at Epoch 4.
(a) The training loss curve shows that the model converges after 4 epochs;
(b) The F1 score curve of the validation set reaches a peak at epoch 4.

higher F1-scores compared to baseline methods—this compu-
tational expense is justifiable, particularly in scenarios where
detection accuracy is paramount.

In practice, the weights g1, g2, and g3 are adaptively
adjusted based on input complexity. For simpler, semantically
focused transactions, the model may assign weights such as
[0.8, 0.1, 0.1], thereby favoring the BERT-based semantic em-
beddings. In contrast, structurally complex transactions involv-
ing multiple accounts might yield weights like [0.2, 0.3, 0.5],
emphasizing the hybrid embedding EFusion.

Even though EFusion is already dynamically weighted, the
additional gating mechanism—via g1, g2, and g3—provides a
higher-level adaptive decision layer. This extra flexibility al-
lows the model to dynamically choose among single-modality
embeddings (BERT or GCN-Enhanced) and the hybrid em-
bedding, thereby enhancing its adaptability to heterogeneous
blockchain data. Our experimental results confirm that this
dynamic gating significantly contributes to the overall perfor-
mance and flexibility of the model.

5) Classifier Design: The fused multimodal embedding
vector Hfusion is input into a fully connected layer for the
classification task. Through the Softmax layer, the model
outputs the probability of whether an account is related to
fraudulent behavior:

y = Softmax(WfusionHfusion + bfusion) (10)

where Wfusion and bfusion are the weight matrix and bias
vector of the classifier, respectively.

ETH-GBERT Model enhances the joint learning of global
relationships and local semantic information in blockchain
transactions through the fusion of GCN and BERT embed-
dings. Through multimodal fusion, the model improves its
ability to detect complex fraudulent behaviors effectively.

IV. VALIDATION

A. Dataset review

As shown in Table II, we evaluate our model on three
blockchain fraud detection datasets with distinct character-
istics. Detailed descriptions and key attributes are provided
below.

1) Multigraph Dataset: This dataset is publicly available
and is provided by Chen et al. (2021). The dataset is obtained
by performing second-order breadth-first search (BFS) from
known phishing nodes over a large-scale Ethernet transaction
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TABLE II
COMPARATIVE SUMMARY OF DATASET ATTRIBUTES

Attribute Multigraph Transaction Network B4E

Time Span 2015–2019 2017–2022 2017–2022
Nodes/Accounts 2,973,489 60,000 597,258
Edges/Transactions 13,551,303 200,000 1,678,901
Phishing Accounts 1,165 1,259 3,220

network. The dataset contains 2,973,489 nodes, 13,551,303
edges, and 1,165 phishing nodes. [29]

2) Transaction Network Dataset: This dataset was collected
by Wu et al. (2022) through Ethernet nodes. It includes 1,259
phishing accounts and an equal number of normal accounts.
The first-order neighbours of each account and the transaction
edges between them are also included in the dataset, and
the subnetwork contains about 60,000 nodes and 200,000
transaction edges [30].

3) BERT4ETH: We use the BERT4ETH dataset pro-
vided by Hu et al. (2023), which is generated from se-
quences of Ether transactions spanning from 2017 to 2022.
The dataset contains 597,258 accounts, 1,678,901 transaction
edges, and 3,220 labeled phishing accounts. It also includes
de-anonymised data (ENS and Tornado Cash) and ERC-
20 token logs. BERT4ETH captures multihop relationships
between trading accounts and is suitable for phishing account
detection and account de-anonymisation tasks. This dataset
is an important component of our experiments and helps to
further evaluate the performance of the model [25].

B. Baseline
In this experiment, we selected three common categories of

baseline models for comparison:
1) Graph embedding methods based on random walks, in-

cluding DeepWalk [31], Trans2Vec [30], Dif2Vec [32],
and Role2Vec [33], [34];

2) Graph neural network(GNN) models, including GCN [7],
GraphSAGE [35], and GAT [24];

3) BERT4ETH, a model designed specifically for fraud
detection on Ethereum [25].

DeepWalk generates node sequences through random walks
on the graph and employs the skip-gram model to learn
low-dimensional representations of nodes. Trans2Vec builds
on DeepWalk by incorporating transaction heterogeneity and
temporal features, designed specifically for detecting phishing
accounts in the Ethereum network. Dif2Vec adjusts the sam-
pling probabilities of nodes during random walks to enhance
the diversity of embeddings by increasing the sampling of low-
degree nodes. Role2Vec learns structural roles of nodes rather
than focusing solely on proximity relationships, generating
more generalizable embeddings.

Regarding GNN-based models, GCN aggregates the features
of neighboring nodes via convolution operations to learn node
representations, making it suitable for tasks such as node
classification. GraphSAGE generates new node embeddings by
sampling and aggregating the features of neighboring nodes,
which enables it to handle large-scale graph data. GAT intro-
duces an attention mechanism, dynamically assigning weights

to each node’s neighbors to aggregate node information more
effectively.

BERT4ETH is specifically designed for detecting fraudulent
activities on the Ethereum network, leveraging BERT along
with transaction data features from the Ethereum network to
identify fraudulent behavior within blockchain transactions.

In our experiments, all baseline models, including
BERT4ETH, DeepWalk, Trans2Vec, Dif2Vec, Role2Vec,
GCN, GSAGE, and GAT, were implemented according to
the original configurations specified in their respective papers.
This ensures a fair comparison of performance across different
models.

V. PREPROCESSING AND TRAINING SETTINGS

In this section, we describe the ETH-GBERT preprocessing
setup, initial parameters, loss function, and evaluation metrics
used in our experiment.

A. Data Loading and Preprocessing

Before training, the dataset was split into training, valida-
tion, and test sets, accounting for 80%, 10%, and 10% of the
total data, respectively. We used PyTorch’s DataLoader to
load the data in mini-batches, with shuffling applied during
the training process. The training set is used to update model
parameters, the validation set evaluates the model’s general-
ization ability, and the test set is used for final performance
evaluation.

B. Hyperparameter Settings

The following hyperparameters were set during the model
training:

• Learning rate: The initial learning rate was set to
8 × 10−6, and a learning rate scheduler was employed
to adjust the learning rate dynamically.

• Regularization coefficient: L2 regularization was ap-
plied with a coefficient of λ = 0.001 to prevent over-
fitting.

• Batch size and gradient accumulation: The batch size
was set to 32. We adopted gradient accumulation to save
memory, updating the model’s parameters after every 2
mini-batches.

• Epochs: We have set the maximum number of epochs to
40. Prior work [23] indicates convergence within 30–50
epochs for similar tasks. Training our Ethereum subgraph
requires significant memory (about 12.4GB per epoch),
and 40 epochs guarantee stable training within 24 hours.

C. Loss Function and Optimizer

We used the cross-entropy loss function for the classification
task [36], defined as:

L = − 1

N

N∑
i=1

(yi log(pi) + (1− yi) log(1− pi)) (11)

where N is the batch size, yi is the ground truth label, and pi
is the predicted probability.
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TABLE III
PERFORMANCE COMPARISON OF ETH-GBERT AND BASELINE MODELS ON VARIOUS DATASETS

Model Multigraph Transaction Network B4E
F1 Score Recall Precision F1 Score Recall Precision F1 Score Recall Precision

BERT4ETH 67.11 61.25 74.21 64.21 62.17 66.39 64.26 63.58 64.95
DeepWalk 58.44 58.21 58.67 59.21 58.31 60.14 54.51 55.38 53.67
Trans2Vec 52.13 51.36 52.92 54.28 56.26 52.43 55.31 54.96 55.66
Dif2Vec 65.27 64.21 66.37 62.11 62.54 61.69 63.25 63.54 62.96
Role2Vec 74.13 74.52 73.74 71.39 71.58 71.20 74.25 74.25 74.25
GCN 42.29 74.07 29.59 41.12 73.37 28.56 64.71 72.68 58.31
GSAGE 35.47 34.77 36.20 33.79 32.99 34.64 53.28 60.47 47.62
GAT 39.98 79.82 26.67 41.61 77.56 28.43 61.50 85.20 48.12
ETH-GBERT 94.71 94.71 94.71 86.16 87.82 84.56 89.79 89.57 90.84

The AdamW optimizer was employed for optimization,
combining the adaptive learning rate of Adam with L2 regu-
larization through weight decay. The update rule for AdamW
is given by:

θt+1 = θt − η · mt√
vt + ϵ

(12)

where mt and vt are the first and second moments of the
gradients, and ϵ is a small constant to avoid division by zero.

D. Evaluation Metrics

At the end of each epoch, the model’s performance was
evaluated on the validation set using precision, recall, and F1
score as evaluation metrics:

• Precision:

Precision =
TP

TP + FP

• Recall:
Recall =

TP
TP + FN

• F1 Score:

F1 Score = 2 · Precision · Recall
Precision + Recall

Here, TP, TN, FP, and FN represent the number of true
positives, true negatives, false positives, and false negatives,
respectively. These evaluation metrics provide a comprehen-
sive view of the model’s classification performance and help
monitor the generalization ability throughout the training pro-
cess.

VI. PERFORMANCE

To evaluate the effectiveness of our proposed ETH-GBERT
model in detecting fraud in blockchain transaction data,
we compared its performance with several baseline mod-
els, including BERT4ETH, DeepWalk, Trans2Vec, Dif2Vec,
Role2Vec, GCN, GSAGE, and GAT. These models were
applied to three different datasets: Multigraph, Transaction
Network, and B4E. The comparison focuses on key metrics
such as F1 score, recall, and precision, as shown in Table III.

A. Overview of Model Performance

From the experimental results, it is evident that ETH-
GBERT significantly outperforms all baseline models across
the datasets in terms of F1 score, recall, and precision.

• On the Multigraph dataset, ETH-GBERT achieves an
F1 score of 94.71, approximately 10 points higher than
GAT (84.35). This demonstrates ETH-GBERT’s ability
to effectively combine graph structures and semantic
information for superior fraud detection performance.

• On the Transaction Network dataset, ETH-GBERT
achieves an F1 score of 86.16, with a recall of 87.82
and precision of 84.56. Compared to GAT (F1 score
of 83.27) and GCN (F1 score of 83.29), ETH-GBERT
provides enhanced accuracy in capturing the complexities
of transaction relationships.

• On the B4E dataset, ETH-GBERT achieves an F1 score
of 89.79, surpassing all the baseline models. Notably,
ETH-GBERT excels in recall, achieving 89.57, highlight-
ing its sensitivity in identifying potential fraud cases.

B. Comparison with Baseline Models

Several key insights can be drawn from the comparison with
baseline models:

1) BERT4ETH: While BERT4ETH demonstrates reason-
able performance in extracting local semantic informa-
tion, its F1 scores on both the Multigraph and Transaction
Network datasets (67.11 and 64.21, respectively) are
significantly lower than ETH-GBERT. This highlights the
importance of incorporating global structure information,
which BERT4ETH lacks.

2) GCN and GSAGE: GCN and GSAGE struggle to
achieve competitive F1 scores, with GCN scoring 42.29
on the Multigraph dataset and 41.12 on the Transaction
Network dataset. These models are effective in capturing
global transaction relationships but lack the ability to
integrate local semantic information, limiting their per-
formance in fraud detection tasks.

3) GAT: The GAT model benefits from its self-attention
mechanism, achieving a relatively higher recall (e.g.,
79.82 on the Multigraph dataset). However, its F1 scores
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TABLE IV
PERFORMANCE IMPROVEMENT ANALYSIS VIA MULTIMODAL DYNAMIC FUSION

Model Multigraph Transaction Network B4E
F1 Score Recall Precision F1 Score Recall Precision F1 Score Recall Precision

BERT Only 90.10 90.07 90.15 80.87 78.12 83.82 85.19 83.05 87.44
Difference(%) -4.61 -4.64 -4.56 -5.29 -9.70 -0.74 -4.6 -6.52 -3.40
GCN Only 42.29 74.07 29.59 41.12 73.37 28.56 64.71 72.68 58.31
Difference(%) -52.42 -20.64 -65.12 -45.04 -14.45 -56.00 -25.08 -16.89 -32.53
Simple Combination 84.55 84.15 86.29 83.27 83.75 83.55 85.35 88.16 82.71
Difference(%) -10.16 -10.56 -8.42 -2.89 -4.07 -1.01 -4.44 -1.41 -8.13
Weighted Combination 92.43 92.51 92.47 85.21 83.75 86.73 88.23 86.34 90.20
Difference(%) -2.28 -2.20 -2.24 -0.95 -4.07 +2.17 -1.56 -3.23 -0.64
ETH_GBERT 94.71 94.71 94.71 86.16 87.82 84.56 89.79 89.57 90.84

TABLE V
PERFORMANCE WITH DIFFERENT NORMAL TO FRAUD RATIOS

Ratio Multigraph Transaction Network B4E
F1 Score Recall Precision F1 Score Recall Precision F1 Score Recall Precision

1:9 78.50 80.10 77.90 75.20 76.90 74.50 70.30 72.20 69.80
2:8 81.30 82.40 80.20 77.80 79.50 76.70 73.10 74.80 72.90
3:7 83.70 84.50 82.90 80.30 81.80 79.90 75.40 77.20 74.60
4:6 87.50 88.20 86.70 84.10 85.40 83.82 79.10 80.70 78.90
5:5 94.71 94.71 94.71 86.16 87.82 84.56 89.79 89.57 90.84
6:4 89.30 90.20 88.70 83.80 85.10 82.90 81.18 82.60 79.80
7:3 85.60 86.50 84.80 80.90 82.30 79.10 77.20 78.80 76.50
8:2 82.30 83.40 81.60 77.60 79.10 76.40 73.90 75.50 73.20
9:1 80.10 81.20 79.30 75.40 76.83 74.60 71.30 72.80 70.50

remain low (39.98 on Multigraph and 41.61 on Transac-
tion Network), due to its limited ability to model textual
features and complex fraud patterns.

4) ETH-GBERT: Our proposed ETH-GBERT model sig-
nificantly outperforms all baseline models across all
datasets. It achieves the highest F1 scores of 94.71,
86.16, and 89.79 on the Multigraph, Transaction Net-
work, and B4E datasets, respectively. This performance
demonstrates the effectiveness of ETH-GBERT in dynam-
ically fusing global transaction network information with
local semantic features from transaction texts, enabling
superior fraud detection capabilities.

C. Improvement Analysis via Multimodal Dynamic Fusion
Table IV illustrates the performance improvements brought

by multimodal dynamic fusion, showcasing the different per-
formances of Unimodal Models, Static Fusion Methods, and
Dynamic Fusion.

• Unimodal Models: The BERT-only model achieves
strong results in the Multigraph dataset (F1 Score =
90.10) due to its ability to model language-centric fea-
tures. However, it performs poorly in Transaction Net-
work and B4E datasets (F1 Scores = 80.87 and 85.19), in-
dicating its limitations in graph-based tasks. Conversely,
the GCN model, which relies solely on graph information,
performs poorly across all datasets, showing its limited
capacity to model textual features.

• Static Fusion Methods: The GCN-enhanced BERT ap-
proach combines semantic and graph features, but its
fixed fusion mechanism prevents dynamic weight adjust-
ment to fully leverage their respective advantages. As a
result, the performance gains are limited, and on some
datasets, the metrics even perform worse compared to
using BERT alone.

• Dynamic Fusion (ETH-GBERT): The ETH-GBERT
model, leveraging dynamic fusion, achieves the best
performance across almost all datasets. It dynamically
adjusts the contributions of BERT and GCN, resulting
in F1 Scores of 94.71, 86.16, and 89.79 in Multigraph,
Transaction Network, and B4E datasets, respectively.
Compared to static fusion, it offers consistent improve-
ments (e.g., +2.28 in Multigraph, +1.56 in B4E).

The results highlight the limitations of unimodal and static
fusion methods in handling multimodal data. Dynamic fusion,
as implemented in ETH-GBERT, effectively balances textual
and graph-based features, achieving superior performance and
adaptability across diverse tasks. This demonstrates its poten-
tial as a robust multimodal learning approach.

D. Impact of Normal to Fraud Ratio on Model Performance
In this subsection, we evaluate how varying the ratio of

normal to fraud transactions in the dataset affects the per-
formance of the ETH-GBERT model across three different
datasets: Multigraph, Transaction Network, and B4E.
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We trained the ETH-GBERT model on datasets with varying
ratios of normal to fraud transactions, ranging from 1:9 to
9:1. The key evaluation metrics—F1 Score, Recall, and Preci-
sion—were tracked for each dataset to understand the impact
of different data distributions on the model’s performance.

Table V presents the performance metrics for each dataset
under different normal-to-fraud ratios. The results demonstrate
that the ETH-GBERT model performs optimally on a balanced
dataset (5:5 ratio), achieving the highest F1 Score, Recall,
and Precision. For example, in the Multigraph dataset, the
model reaches an F1 Score of 94.71, while in the Transaction
Network dataset, the highest F1 Score is 86.16. The B4E
dataset also shows strong performance, with an F1 Score of
89.79 at the 5:5 ratio.

Although the performance declines as the data becomes im-
balanced, the ETH-GBERT model remains robust. The overall
performance decrease is more pronounced in datasets with
more complex transaction patterns, such as the B4E dataset,
where the interaction between normal and fraud transactions
may contain more nuanced features.

These findings suggest that while the ETH-GBERT model
can handle imbalanced datasets, a balanced ratio between
normal and fraud transactions helps the model achieve its best
performance.

E. Insights from Experimental Results

We further analyze the experimental results to gain deeper
insights into the performance variations across different
datasets and fusion strategies:

• On the Multigraph dataset, the performance of the
BERT-only model was notably strong (F1 score = 90.10),
closely approaching our proposed ETH-GBERT (F1 =
94.71). This indicates that textual transaction semantics
alone contain highly discriminative signals for phishing
detection on this dataset. However, on the Transac-
tion Network dataset, the BERT-only model performed
poorly (F1 score = 80.87) compared to ETH-GBERT
(F1 = 86.16). The significant performance gap suggests
that structural relationships captured by the GCN compo-
nent are critical for detecting complex transaction-based
phishing behaviors that textual embeddings alone cannot
adequately represent.

• Regarding fusion strategies, simple combination methods
showed relatively limited effectiveness on the Multi-
graph dataset (F1 = 84.55), considerably behind ETH-
GBERT (F1 = 94.71). This indicates that the Multigraph
dataset might require more sophisticated dynamic weight-
ing to effectively leverage both modalities. In contrast,
for the Transaction Network and B4E datasets, the
differences between simple/weighted combinations (F1
scores around 83-86) and ETH-GBERT (F1 scores 86.16
and 89.79 respectively) were comparatively smaller.
These findings suggest that the incremental performance
gains of dynamic fusion become particularly pronounced
on datasets with distinctive modality strengths or high
structural-semantic heterogeneity.

VII. LIMITATIONS AND FUTURE DIRECTIONS

Although the proposed ETH-GBERT model demonstrated
significant improvements in phishing detection on blockchain
transaction data, several limitations should be acknowledged
clearly:

• Generalization to Other Fraud Types: Currently, our
method and experiments specifically focus on phish-
ing detection. Extending our approach to other types
of blockchain-related fraud, such as Ponzi schemes,
money laundering, or ransomware payment detection,
would require careful re-examination and possibly ad-
ditional domain-specific feature engineering. Future re-
search could investigate how well the proposed dynamic
multimodal fusion generalizes across various types of
blockchain fraud.

• Real-time Detection vs. Offline Analysis: The current
ETH-GBERT model, due to computational complexity
in multimodal embedding fusion and adjacency matrix
construction, primarily targets offline or batch-mode anal-
ysis scenarios. Implementing this approach for real-time
detection poses additional computational challenges, such
as incremental graph updating and real-time embedding
inference. Future research should explore incremental
learning and efficient real-time fusion mechanisms for
live blockchain monitoring.

VIII. CONCLUSION

In this paper, we proposed a novel dynamic multimodal
fusion model(ETH-GBERT) for fraud detection in blockchain
transactions. By adaptively integrating global structural fea-
tures from transaction networks and local semantic informa-
tion from transaction texts, the model effectively addresses
the limitations of existing methods, achieving a better balance
between computational efficiency and representation learning
power.

To support the proposed model, we developed a compre-
hensive data processing pipeline, including graph construction
for capturing inter-account relationships and temporal feature
extraction using n-gram time differences. This pipeline enables
the model to simultaneously analyze global structural patterns
and local contextual features embedded within transaction
data. Furthermore, the dynamic fusion mechanism introduced
in this work adaptively adjusts the contributions of structural
and semantic features based on transaction context, enhancing
the model’s accuracy and robustness in detecting complex
fraudulent activities.

Through extensive experiments on large-scale blockchain
datasets, our model demonstrated significant improvements
over existing benchmark methods, achieving the highest F1
scores across multiple evaluation scenarios.

The key contributions of this study are as follows:
• Proposing a multimodal fusion framework that dynam-

ically integrates structural and semantic information to
enhance blockchain fraud detection.

• Developing a robust and efficient data processing pipeline
that captures both global transaction relationships and
temporal behavioral patterns.
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• Introducing a dynamic feature fusion mechanism that
adaptively balances feature contributions, improving de-
tection precision and efficiency across varied contexts.

• Demonstrating the effectiveness of the proposed approach
through experiments, where it significantly outperformed
state-of-the-art models on multiple real-world datasets.
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[24] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, Y. Bengio,
Graph attention networks, arXiv preprint arXiv:1710.10903 (2017).

[25] S. Hu, Z. Zhang, B. Luo, S. Lu, B. He, L. Liu, Bert4eth: A pre-trained
transformer for ethereum fraud detection, in: Proceedings of the ACM
Web Conference 2023, 2023, pp. 2189–2197.

[26] W. Chen, Z. Zheng, E. C.-H. Ngai, P. Zheng, Y. Zhou, Exploiting
blockchain data to detect smart ponzi schemes on ethereum, IEEE
Access 7 (2019) 37575–37586.

[27] M. Clarke, Arbitrary-order sampling and hand motion modeling with
transformers, Ph.D. thesis, Open Access Te Herenga Waka-Victoria
University of Wellington (2023).

[28] Z. Xue, R. Marculescu, Dynamic multimodal fusion, in: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2023, pp. 2575–2584.

[29] L. Chen, J. Peng, Y. Liu, J. Li, F. Xie, Z. Zheng, Phishing scams de-
tection in ethereum transaction network, ACM Transactions on Internet
Technology (TOIT) 21 (1) (2020) 1–16.

[30] J. Wu, Q. Yuan, D. Lin, W. You, W. Chen, C. Chen, Z. Zheng, Who
are the phishers? phishing scam detection on ethereum via network
embedding, IEEE Transactions on Systems, Man, and Cybernetics:
Systems 52 (2) (2020) 1156–1166.

[31] B. Perozzi, R. Al-Rfou, S. Skiena, Deepwalk: Online learning of social
representations, in: Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining, 2014, pp. 701–
710.

[32] B. Rozemberczki, R. Sarkar, Fast sequence-based embedding with
diffusion graphs, in: Complex Networks IX: Proceedings of the 9th
Conference on Complex Networks CompleNet 2018 9, Springer, 2018,
pp. 99–107.

[33] N. K. Ahmed, R. Rossi, J. B. Lee, T. L. Willke, R. Zhou, X. Kong,
H. Eldardiry, Learning role-based graph embeddings, arXiv preprint
arXiv:1802.02896 (2018).

[34] F. Béres, I. A. Seres, A. A. Benczúr, M. Quintyne-Collins, Blockchain
is watching you: Profiling and deanonymizing ethereum users, in:
2021 IEEE international conference on decentralized applications and
infrastructures (DAPPS), IEEE, 2021, pp. 69–78.

[35] W. Hamilton, Z. Ying, J. Leskovec, Inductive representation learning
on large graphs, Advances in neural information processing systems 30
(2017).

[36] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, nature 521 (7553)
(2015) 436–444.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2025.3576130

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on June 14,2025 at 01:17:12 UTC from IEEE Xplore.  Restrictions apply. 

https://doi.org/10.32782/2413-2675/2023-55-11

	Introduction
	Related Work
	Graph-based Fraud Detection
	Fraud Detection Based on Time Series Data
	Hybrid Methods

	Methodology
	Data generation and pre-processing
	Time Aggregation Feature Enhancement
	Graph Data Generation
	Text Transaction Data Generation
	Summary of Extracted Features and TSV Representation
	Text Data Cleaning

	ETH-GBERT Model Architecture
	Model Architecture
	Graph-Based Representation Module Design
	Semantic Feature Extraction Module Design
	Multimodal Fusion
	Classifier Design


	Validation
	Dataset review
	Multigraph Dataset
	Transaction Network Dataset
	BERT4ETH

	Baseline

	Preprocessing and Training Settings
	Data Loading and Preprocessing
	Hyperparameter Settings
	Loss Function and Optimizer
	Evaluation Metrics

	Performance
	Overview of Model Performance
	Comparison with Baseline Models
	Improvement Analysis via Multimodal Dynamic Fusion
	Impact of Normal to Fraud Ratio on Model Performance
	Insights from Experimental Results

	Limitations and Future Directions
	Conclusion
	References

