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Abstract

Logs, critical for system monitoring, troubleshooting, and audit-
ing, are widely used in security analysis and business analytics,
making them an indispensable component of modern software sys-
tems. Although multiple automated log generation techniques have
been proposed, their practical adoption in software development
remains challenging. State-of-the-art solutions lack sufficient con-
textual awareness and are designed to insert only one log statement
in a method, significantly limiting their real-world applicability.
Specifically, we identify three inherent limitations with existing
schemes: lack of multi-log generation capability, insufficient seman-
tic dependency context and limited logging variable scope. To this
end, we propose PDLOGGER, the first high-accuracy log statement
generation approach that is applicable to real-world development
scenarios. First, PDLOGGER leverages static analysis to extract se-
mantic dependency information, enabling the generation of more
closely reflect the original intent of the ground truth and less re-
dundant log statements. Second, it introduces a block-type-based
structured prompting strategy to query the model in a more tar-
geted manner, which significantly reduces the false positive rate of
log position prediction in the multi-log prediction setting. Finally,
performing function-aware extension by incorporating function
information into the variable list. The evaluation results demon-
strate that PDLOGGER outperforms the state-of-the-art approach
by 139.00% in log position precision, 69.20% in F1 score, 82.30% in
logging level accuracy, 131.80% in variable precision, and 65.70% in
BERTScore for log message generation. Furthermore, PDLOGGER
consistently achieves strong performance across a variety of large
language models, indicating its robust generalizability.

1 Introduction

With the growing complexity and scale of software systems, logging
has evolved from optional to a widely recognized and indispensable
mechanism for ensuring software reliability and integrity. However,
unreasonable logging practices not only compromise the readability
of logs but also influence system performance[60]. To address this
issue, numerous automated logging schemes have been proposed
to help developers insert log statements more effectively. A typical
logging statement consists of four key components: position, level,
message, and variable. Most prior techniques target only individual
components (e.g., predicting log positions [18, 29, 51, 59, 60], levels
[23, 30, 33], or messages [10, 15, 55]) and are not able to generate
complete logs, making them unsuitable for real-world development.

Recent advances in large language models (LLMs) have attracted
much attention in the field of automated logging. LLMs learn com-
mon logging patterns from massive code corpora, understand both
natural language and code, and can infer a developer’s intent from
surrounding context. This makes them potentially capable of gen-
erating concise, informative messages that follow project-specific

conventions, incorporate relevant variables, and assign appropri-
ate severity levels. As a result, LANCE [37], the first end-to-end
log generation approach, is built on an LLM named T5 [42] and
is capable of inserting complete log statements into given code
snippets. However, it relies solely on intra-method information,
overlooking contextual information from both callers and callees.
To address it, SCLogger [26] enhances log quality through static
scope expansion, style adaptation, and context-aware prompt con-
struction. Nevertheless, SCLogger fails to incorporate semantic
dependency information, often generating superficial error descrip-
tions that lack insight into the root cause. UniLog [48] leverages
LLM with line-position-sensitive in-context learning prompts to
predict a complete log without fine-tuning; however, it likewise
fails to capture deeper semantic dependencies.

Limitations. To sum up, we identify three key limitations in ex-
isting state-of-the-art approaches, which will be further illustrated
with real-world examples in Section 2.

First, none of the existing approaches, by design, handle multi-
ple log generation scenarios within a method. In modern software
systems, it is extremely common for a single method to contain
multiple logging statements, which are essential for enhancing
system observability and facilitating fault diagnosis. Our analysis
of the LogBench-O benchmark [25] reveals 6,849 log statements
across 3,870 methods, resulting in an average of 1.77 log state-
ments per method. However, state-of-the-art automated logging
techniques [26, 36, 48] are designed and assessed under the assump-
tion that each method requires at most one log statement. This
limitation severely hinders their applicability in real-world devel-
opment scenarios. Therefore, it is imperative to develop techniques
that support multi-log generation within a single method.

Second, state-of-the-art logging techniques lack sufficient seman-
tic dependency context. Among the existing methods, only SCLog-
ger [26] attempts to incorporate contextual information; however,
its context is limited to a small subset of randomly selected callers
and callees (within two hops). As a result, the retrieved context is of-
ten incomplete and semantically irrelevant or misleading, rendering
low-quality log generation.

Third, all existing techniques suffer from a limited scope of log-
ging variables. Recent studies, such as SCLogger, incorporate the
member functions and attributes of the class that contains the
given method into its log variable list. However, it overlooks the
case where non-member functions or function expressions are used
directly as logging variables. Our empirical study on 100 randomly
sampled logs from Apache Hadoop [5] reveals that 13% of the logs
utilize non-member functions or function expressions as variables.
This observation highlights that the limited scope of log variable
lists will likely result in the omission of critical variables, thereby
reducing the expressiveness and diagnostic value of the logs.

Our Approach. To tackle these issues, we propose PDLOGGER,
the first automated log generation technique that is designed to
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be practical in real-world software development. It generates log-
ging statements through three major phases, namely log position
prediction, log generation, and refinement. In the log position pre-
diction phase, we first extract the boundaries of code blocks within
a given method and annotate their start and end positions to facili-
tate better recognition by LLM. Based on our empirical analysis of
log placement principles, we design customized prompts tailored
to different types of blocks. Finally, we query the LLM once for
each prompt. This helps address the inability to perform multi-log
prediction and mitigates the excessive false positives that arise in
such scenarios. Then PDLOGGER leverages the LLM to predict log
positions for different block types independently. The predicted
positions may still contain false positives, which will be addressed
in the deduplication step. In the log generation phase, based on
the positions predicted in the first stage, our system applies static
slicing techniques to generate backward slices, which can capture
the precise semantic dependencies of the code around the logging
positions.

Then, in the Variable Analysis and Function-aware Extension
step, in addition to following SCLogger’s approach to variable scope
extension, we further expand the information of functions that
can be used to generate log variables, thereby addressing the is-
sue where log variables cannot be functions or function expres-
sions. These dependencies and function information are then inte-
grated into updated prompts, which are passed to LLM to generate
complete log statements. After that, PDLOGGER using the log level
refinement strategy to increase the accuracy of the level. In the
deduplication step, PDLOGGER further identifies similar logs within
specific log contexts and removes redundant ones. This reduces the
number of false-positive logs in the program, thereby mitigating
the risk of developers being misled and improving the utility of log
information.

Unlike previous approaches[26, 37], we acquire a dataset that
contains no logging statements. We constructed such a dataset
using open-source Java projects from two different domains and
conducted a comprehensive evaluation on it. The results show that
PDLOGGER achieves the best performance across all metrics, ex-
cept for recall in log position prediction. Specifically, PDLOGGER
outperforms the baseline approach by 139.00% in log position pre-
cision, 69.20% in F1 score, 82.30% in logging level accuracy, 131.80%
in variable precision, and 65.70% in BERTScore [57] for log mes-
sage generation. Moreover, PDLOGGER consistently achieves strong
performance across a variety of large language models, thus demon-
strating its generalizability.

The contributions of this paper are summarized as follows:

e To the best of our knowledge, we present the first prac-
tically deployable log-statement generator. By embedding
semantic-dependency context, PDLOGGER overcomes prior
work that captures only surface-level signals.

e We design a novel prompt structure to improve prediction
accuracy in multiple log generation scenarios. This struc-
ture can be integrated into other generative log generation
methods and generalized to future LLM improvements.

o We investigate existing logs in real-world projects and sum-
marize a deletion priority rule to reduce false positives. This
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rule is generalizable and can be applied to false-positive
deduplication tasks in various log generation methods.

e We conduct a comprehensive evaluation of PDLOGGER on a
dataset generated from public projects. The results show that
PDLOGGER outperforms existing approaches and is adaptable
to different LLMs.

o The source code of PDLOGGER is publicly available at https:
//github.com/qlbdsc/PDLogger to benefit both developers
and researchers.

2 Motivation

In this section, we highlight the motivation of our research by
listing three major limitations of the existing logging techniques.

2.1 Lack of Multi-log Generation Capability

Empirical evidence indicates that developers typically embed mul-
tiple log statements within a single method. However, state-of-the-
art automated logging techniques [26, 36, 48] are designed and
assessed under the assumption that each method requires at most
one log statement. Although these techniques can, in principle, be
extended to predicate multiple logs, such naive adaptations will
likely introduce an excessive number of false positives.

private synchronized void pushToZK(byte[] newSecret, byte[] currentSecret,byte[] previousSecret) {

@ LOG.info("Preparing to push data to ZooKeeper at path: {}", path);
LOG.debug("Generated ZooKeeper data payload of length: {}, (newSecret != null &&

@) currentSecret != null && previousSecret != null)? generateZKData(newSecret, currentSecret,
previousSecret).length : "null input");

@ LOG.trace("Generated ZooKeeper data payload of length: {}", bytes != null ? bytes.length : 0);
byte[] bytes = generateZKData(newSecret, currentSecret, previousSecret);
try {

@ LOG.trace("Attempting to set ZooKeeper data with version: {}, zkVersion);

client.setData().withVersion(zkVersion).forPath(path, bytes);

® LOG.info("Successfully pushed data to ZooKeeper path: {}", path);
} catch (KeeperException.BadVersionException bve) {

®[_LOG.warn("Failed to push data to ZK due to version conflict (expectedversion: {})", zkVersion);|
} catch (Exception ex) {

@[_LOG.error("Unexpected error while pushing data to ZK at path {}";, path, ex);|
}

}

|©,®are the ground truths (@ predicted by SCLogger (D) - @predicted by SCLogger

Figure 1: Multi-Log Generation Issues

We illustrate this limitation with an example method from the
ActiveMQ [1] project, shown in Figure 1. The function contains two
logging statements written by the developer, which we treat as the
ground truth and mark in red (6 and 7). The vanilla state-of-the-art
technique, SCLogger, can only generate one log for the method (6),
and thus fails to support multi-log generation. To accommodate
multiple log cases, we adapt SCLogger [26] by revising its LLM
prompt to elicit predictions of several log statements, resulting in
a new variant that we designate as Multi-SCLogger. It generates
seven logs — two true positives and five false positives (1-7), yielding
100% recall but only 28.6% precision. The results show that simply
modifying existing techniques to support multi-log generation is
ineffective in practice, as it leads to performance degradation and
significant data redundancy. Consequently, we need a system that
is specifically designed to handle multiple-log scenarios.

2.2 Insufficient Semantic Dependency Context

In modern software systems, a method’s execution often depends
on interactions with other methods [35]. Although approaches like
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SCLogger [26] extend context from the method level by including
randomly selected caller and callee methods within two hops, such
random selection will likely fail to capture complete relevant infor-
mation for log generation, resulting in inaccurate logs. To improve,
it is crucial to analyze the precise contextual information by incor-
porating control and data dependencies, which reveal execution
prerequisites and upstream influences vital for understanding the
semantics and execution conditions of the target line [9].

In10  public void receiveData(String data, String source) =&
{
In11 metadata.put("source", source);

~» [In12 metadata.put("original_data", data); ]
InM3 '}

IN19  public String processData() { ¢

~

‘—- = [In20 if (metadata.containsKey("original_data")) {
\- n21 String processedData = metadata.get("original_data").reglace(" ".|_"); |

n22 return processedData;

In26 }

In28  public static void main(String[] args) {

In33 processor.receiveData("Hello World", "User Input"); _—
N T
C [In34 String result = processor.processData(); | =——————
[In35 if (result == null) { |
In36 }
In37 '}
Fi ion Call ¢ Data Depend ¢ Control Dependency 4— — —

Figure 2: Semantic Dependency Tracking. The red-
highlighted line marks the starting statement of the
backward slice. Blue-highlighted lines denote statements
reached through data and control dependency tracing.

Figure 2 highlights the importance of extracting statement-level
semantic dependencies. When inserting a log after if (result ==
null) (1In.35), SCLogger’s random sampling may only capture
the receive_data function (In.10), offering little insight to infer the
actual cause of the condition. In contrast, tracing control and data
dependencies reveals that the condition at In.35 stems from In.34,
which depends on processor.process_data() at In.22, itself re-
lying on earlier lines. Therefore, the root cause of the condition
result == null is the absence of the value associated with the
original_data key in metadata.

Without the dependency information of the target line, it is
nearly impossible to infer that the condition holds due to the miss-
ing original_data. Moreover, if DataProcessor() is randomly
selected during context expansion, the extracted information may
be irrelevant to the log, reducing log utility. More critically, if a
standard library function is chosen, its function body is typically
inaccessible, offering no meaningful context. Therefore, to gen-
erate high-quality and contextually relevant log statements, it is
necessary to obtain more precise contextual information from the
statement level by leveraging semantic dependencies.

2.3 Limited Log Variable Scope

Log statements often contain variables to enhance log readabil-
ity, improve debugging effectiveness, and increase the utility of
automated analysis [41, 53]. For instance, "LOG. info("Starting
with address: ",getDatanodeAddress());" includes a func-
tion call to retrieve and output the actual runtime address of the
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current node. The return value of this function enables develop-
ers to quickly identify key information, such as which specific
node initiates the startup process. Prior studies [11, 12, 52] have
shown that, compared to purely textual logs, developers prefer log
statements that contain program state variables, as they facilitate
issue localization and comprehension of system behavior. However,
when considering potential logging variables, existing techniques
(e.g., SCLogger [26]) focus only on member functions and local
variables, but overlook cases where non-member functions and
function expressions should also be considered.

public interface Link extends Endpoint

{
——— public int; ge(Cre(Iil(!;
public class AmgpSession implements AmgpResource {

public Sessionld[getSessionld()]{

return sessionld;

}

}
public abstract class AmgpAbstractReceiver extends AmgpAbstractLink<Receiver> {
public int/getConfiguredReceiverCredit()] {
return configuredCredit;
}
}
public abstract class AmgpAbstractLink<LINK_TYPE extends Link> implements
AmgpLink {
protected final AmgpSession
—— public LINK_TYPE[getEndpoint()|{
return endpoint;
}
}

public class AmgpTransactionCoordinator extends AmgpAbstractReceiver {

if (getEndpoint().getCredit() <= (getConfiguredReceiverCredit() * .2)) {
LOG.debug("Sending more credit ({}) to transaction coordinator on session {}",
— betConfiguredReceiverCredit()]-[ge!Endpolnt().gelCredit()],[session.getSessionId(j);

...... | J :

Figure 3: Log Variable Origins

Figure 3 illustrates an example from the ActiveMQ [1]project,
where the log statement includes both a function call and arithmetic
operations involving multiple functions as its variables. The log is
intended to record the status of sending additional credit to a trans-
action coordinator within a particular session. To achieve this, the
log message integrates information derived from non-member func-
tions defined outside the current class. These pieces of information
are essential for developers to understand the system’s behavior
regarding resource allocation and transaction coordination during
message processing. Although such omissions may not significantly
impact traditional variable-level metrics in log evaluation, they can
substantially degrade the accuracy of log-based program analysis
and anomaly detection. This limitation can be addressed by extend-
ing non-member functions extracted from semantic dependency
contextual information into the variable list during log generation.

3 System Design and Implementation

3.1 Overview

To address the aforementioned limitations, we propose PDLOGGER,
an automated LLM-based log generation framework that can be
practically applicable to real-world software development.

Figure 4 illustrates the overview of our system, which takes a
project codebase as input and outputs an enhanced project with
log statements generated. The entire system consists of three ma-
jor phases: log position prediction, log generation, and refinement.
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Figure 4: Overview of PDLOGGER

Given a project codebase, we generate logs for each method by
following these three phases. Specifically, in the log position pre-
diction phase, we identify the start and end positions of different
code blocks, following a prior work [29] that identifies where log
statements are most likely to exist. Then, we annotate the method
with the block information to form a block-type-based structured
prompt, which is fed into the LLM to predict log positions.

Then, in the log generation phase, we use the predicted log po-
sitions to perform backward slicing, incorporating both data and
control dependencies information into the prompt. We then extract
the variable list and enrich it with detailed function-level informa-
tion. This enriched semantic context is combined with the context
extracted in the previous phase, along with CoT [46] reasoning, to
form a new prompt. This prompt is fed into the LLM to obtain the
final logging statements.

Since the log level reflects the importance of a logging state-
ment [14, 38], in the refinement phase, we subsequently conduct
a level refinement to improve the accuracy of log level prediction.
Finally, to reduce false positives, PDLOGGER introduces a unique
deduplication process, producing a filtered set of logging state-
ments. The final output is the final version of a project, containing
the generated log statements with redundant entries removed.

3.2 Log Position Prediction

To extract a precise semantic dependency context, we need to find
an accurate starting point. Therefore, the first step in PDLOGGER is
to predict log positions. To do so, for the given project, we perform
static analysis for each method and identify all code blocks. Then
we annotate the method with the

Block-type-based Structured Prompt Construction. The block-
type-based structured prompt construction step is designed to gen-
erate customized prompts for each type of code blocks of the target
method. The primary goal of this step is to ensure high precision
and a low false positive rate when predicting multiple log positions.
Accurate position prediction is very important, because if the po-
sition prediction is wrong, the prediction of message, level, and
variable will be meaningless. As shown in Figure 5, , PDLOGGER cat-
egorizes the blocks within a method into four types: branch blocks,
try-catch blocks, loop blocks, and method definition blocks[29]. For
each type, PDLOGGER counts the number of corresponding blocks,
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assigns unique identifiers, and marks the start and end lines of each
block. Then a corresponding prompt is constructed for each block
type and feeds into the LLM, with the number of queries corre-
sponding to the number of such blocks with the target method.
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Figure 5: The Overview Workflow of Phase I

To enhance the precision of position in multi-log prediction
while reducing the false positive rate of position, each prompt for
different type of block incorporates a set of heuristic rules. These
rules were derived through our in-depth review of prior studies
[11, 17, 28, 31, 60] and our own empirical analysis of log placement
principles, particularly the structural and semantic cues that govern
when and where logs should be generated. Importantly, these block-
specific prompting strategies can be readily generalized to other
generative log synthesis frameworks. The four prompt templates
have been made publicly available on our GitHub repository.

Position Prediction. To extract backward slices with accurate
semantic dependencies, this step is designed to predict log posi-
tions. Following the design principles of SCLogger[26], we begin by
extracting inter-method information, including both the code slice
and the log slice. Notably, unlike SCLogger, we omit the variable list
in this step, as it does not contribute to the accuracy of log position
prediction and may even introduce noise.

As shown in Figure 5, the extracted inter-method information is
then combined with the block-type-based prompt, and enhanced
using a set of the heuristic rules. These components together form
the prompt, which is subsequently fed into the LLM to obtain log
position predictions.

3.3 Log Generation

Semantic-dependency Expansion. We define semantic depen-
dency information as the combination of control dependencies and
data dependencies. To extract such information, we generate back-
ward slices based on the log positions predicted in the previous
step. These slices are extracted using Joern[49], which integrates
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syntactic, control-flow, and data-flow dependencies. A key advan-
tage of Joern is its ability to directly analyze source code without
packaging into JAR files.

As shown in Figure 6, based on the predicted log positions within
the target method, we first map each position to its corresponding
line number in the original Java source file and extract the state-
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ments corresponding to the line numbers. However, a key challenge
arises in practice: for certain statements, the generated backward
slice is empty. To address this, PDLOGGER iteratively selects pre-
ceding lines until reaching beyond the start of the current block.
Specifically, for branch blocks, if the predicted position falls within
an else block and no suitable line is found before exceeding the start
of the else block, we instead select the corresponding if condition
statement as the starting point of the backward slice. This is based
on the observation that the if condition and the else block typically
express opposite branches of the same logical judgment, often shar-
ing the same set of conditional parameters[45]. We then perform
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static analysis on the selected line to obtain the corresponding back-
ward slice. To accommodate the input length limitations of LLMs,
we constrain the backward slice to a maximum of seven hops. We
define each "hop" as a traversal across a semantic dependency or
control dependency edge.

Variable Analysis and Function-aware Extension. As high-
lighted in the motivation study, merely expanding the scope of
accessible variables is insufficient to fully meet the requirements of
logging practices, as certain log statements rely on the return values
of functions as logging variables. Therefore, building upon SCLog-
ger’s approach[26] to expanding the variable scope, we further
summarize the information of functions that are likely to appear as
logging variables.

We first adopt the variable sets v defined in SCLogger, where
v € VUV UV, UV UV;[54]. Here, V), denotes the set of parameters,
Vin denotes the set of local variables, V, denotes the set of class
member variables, Vs denotes the set of static variables, and V;
denotes the set of inherited variables. Within the context of the
target method, we define functions sets f € F,, UV; UV; UV U Vs
as follows:

F.,: The set of member methods defined in the current class.
Fj: The set of methods inherited from the parent class.

F;: The set of default methods from implemented interfaces.
F: The set of lambda expressions or function variables de-
clared within the current method.

Fs: The set of statically imported methods from the parent
or current class.

During the prediction of logging statements, the model should
attend not only to the variable sets, but also to function variables
f that belong to one or more of the above-defined function sets.
Consequently, the context provided for logging variable selection
should encompass both variables and function-derived values, col-
lectively denoted as f U v, which are treated as candidate logging
variables and incorporated into the available variable list.

3.4 Refinement

Log Level Refinement. As shown in 7, we refine the initially pre-
dicted log levels before inserting the predicted log statements into
the project. Log levels are essential for distinguishing the verbosity
and severity of log messages, enabling developers to control log
output across different environments, facilitate efficient debugging,
and support runtime monitoring and alerting. Therefore, ensuring
the accuracy of log level prediction is critical. Based on our investi-
gation and [33, 50], we identify five key factors that contribute to
log level determination: (1) the content of the log message, (2) the
method in which the log resides, (3) the semantic explanation of the
log message, (4) the function of the block containing the target log,
and (5) the total number of lines in that block. According to this rule,
we extract these five types of information along with the originally
predicted log level and provide them as input to a large language
model (LLM). The LLM is then tasked with deciding whether the
original log level requires adjustment; if so, it outputs the adjusted
log level, and if not, it recommends retaining the original one. Ex-
perimental results across different backbone models demonstrate
that our proposed log-level refinement approach exhibits strong
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generalization ability. The full prompt used in this process has been
made publicly available in our GitHub repository.

Deduplication. The deduplication step is designed to reduce the
false-positive rate of the predicted log statements, thereby mit-
igating the performance degradation that can arise from exces-
sive logging. It proceeds in two steps. First, the predicted logs
are inserted into the project; second, we construct a Code Context
Bundle—defined as the target method together with the caller and
callee methods within one hop—and eliminate redundant logs by
examining whether the bundle already contains outputs that are
semantically equivalent to the target log.

Log Insertion. To avoid the line-number shifts that would occur if
logs were inserted in an arbitrary order, we first group the predicted
logs by their corresponding Java file. For each file, we then insert
all logs in descending order of line number, from the largest to the
smallest. Note that we insert the predicted log statement at the
line immediately following the predicted position, as the prompt
explicitly instructs the model to insert the log one line after the
predicted location. And some developers may split a single state-
ment across multiple lines for readability or formatting purposes.
To address this issue, we analyze the abstract syntax tree (AST) of
the Java source code to accurately identify the termination point
of the complete conditional expression, thereby enabling precise
insertion of log statements. Finally we get a project augmented
with the predicted logs.

Deduplication. To maximize coverage of potential semantic redun-
dancies, we identify five situations in which a predicted log can be
considered redundant; each is addressed below. (1) Overlap with
throw messages. A log is removed if it conveys the same message
as a throw statement, provided the exception is caught and its mes-
sage printed, or it propagates uncaught to main(). For string-based
exceptions, inter-procedural data-flow analysis traces variable ori-
gins to compare messages more precisely. (2) Contradictory Logs
in an if-else Block. For logs in opposite branches of an if-else
block, we retain the one with a higher level. If levels match, we
keep the else-branch log, as execution of the else branch often
signals an anomalous path of control. (3)Start-End Log Pairs. We
identify pairs of logs that are logically sequential, where the first log
denotes the start of a process (start_log) and the second denotes
its completion (end_log). If a (start_log) is post-dominated by
its (end_log), the former is removed. This rule excludes trace-level
logs, which capture fine-grained execution. (4) Duplicate Semantics
with Shared Variables. For semantically identical logs sharing a vari-
able var_common, static analysis checks for reassignment between
them. If reassigned, the earlier log is removed; otherwise, the later
log is removed. Without shared variables, we retain the log nearer
to meaningful code (e.g., method calls, exceptions). Applying these
five language-agnostic rules yields the final Augmented Project,
and they can be adapted to any Java project because they rely solely
on static analysis and semantic comparison.

4 Evaluation

In this section, we conduct a comprehensive evaluation on the
effectiveness of PDLOGGER. Specifically, we aim to answer four
essential research questions.

Anon.

e RQ1: How effective is PDLOGGER in the single-log generation
scenario?

e RQ2: How effective is PDLOGGER in the multi-log generation
scenario?

o RQ3: What is the impact of different components of PDLOGGER?

e RQ4: How generalizable is PDLOGGER on different backbone
LLMs?

4.1 Experiment Setup

Dataset Selection. To evaluate PDLOGGER, we randomly select
3,113 log statements from two popular projects, Apache Hadoop
3.4.1 [5] and Apache ActiveMQ 5.18.7 [1]. These logs are distributed
across 914 methods, with up to 13 log statements per method, rep-
resenting real-world software development scenarios. For each
sampled method, we extract the identifiers of its package, class,
and method names, and locate all log statements that invoke two
mainstream logging utilities, Log4j [4] and SLF4] [16]. We record
each log statement, along with its corresponding line number in
the source code, and use this information as the ground truth.

Baseline Techniques. In a single-log prediction setting, where
exactly one log is randomly removed from each target method,
the task is to recover this single log. We adopt SCLogger [26], the
first contextualized logging-statement generation approach that
exploits inter-method static contexts, as our primary baseline. We
also include the first deep-learning-based complete log generation
work, LANCE [37], and its successor, LANCE 2.0 [36], as baselines.
Approaches that target only specific sub-components of log gener-
ation are not considered.

In the multi-log prediction setting, we adapt SCLogger by revis-
ing its LLM prompt to elicit predictions of several log statements,
resulting in a new variant that we designate as Multi-SCLogger and
serves as the baseline for the multi-log setting. To demonstrate the
generalizability of our approach, we further conduct experiments
on three mainstream LLMs: DeepSeek-V3 [7], LLaMA3-70B [2], and
OpenAl 03-mini [39].

Log Position Evaluation Metrics. For single-log generation set-
ting, consistent with [37], we use Position Accuracy (PA) to assess
log-position prediction. A prediction is counted as correct (PA =
1) if the predicted line number deviates from the true line number
by at most one and both lines are located within the same code
block; otherwise, PA = 0. For the multi-log setting, we use precision,
recall, and F1 score to evaluate the accuracy and to measure the
proportion of false positives and true positives.

Log Level Evaluation Metrics. We employ L-ACC (level accuracy)
and Average Ordered Distance (AOD) to measure log-level predic-
tion, as in [25, 30, 33]. L-ACC represents the proportion of correctly
predicted levels. AOD captures the ordinal distance between levels,
acknowledging that log levels are not independent categories (e.g.,
error is closer to warn than to trace).

Log Variables Evaluation Metrics. We adopt precision, recall, and
F1-score to evaluate the set of variables referenced in the generated
log statements. For each generated log statement, we denote the set
of variables predicted by the model as Sj,, and the set of variables
in the ground-truth log as Sy. The evaluation metrics are defined as
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1SpNSgl _ 1SpNSyl _ 2-Precision-Recall
[Spl » Recall = [Sgl F1= Precision+Recall *

It is important to note that if a predicted variable has the same name
as a ground-truth variable but differs in the usage of its member
function, it is still considered an incorrect prediction.

follows: Precision =

Log Messages Evaluation Metrics. Following prior studies, we
employ BLEU-K (K = {1, 4}) [40] and ROUGE-K (K = {1,L}) [32]
to quantify surface-level similarity, and additionally adopt BERTSCORE
to capture semantic similarity, because BLEU and ROUGE operate
solely on K-gram overlap. BERTScORE ranges from 0 to 1, with
higher values indicating better quality.

Experimental Environment. The static analysis component of
PDLOGGER is implemented with 4,293 lines of Java and shell code,
combining Joern [49] and Eclipse JDT Core [6] to enable compre-
hensive analysis of Java source code. All experiments for PDLOGGER
and the baselines are executed on a Linux machine running Ubuntu
22.04.5 LTS, equipped with an AMD EPYC 9354 32-Core Processor
@ 3.8 GHz, 2 NVIDIA L40S GPUs (each with 46GB of memory),
and 256 GB of RAM. We employ the public API to access O3-mini-
20240131 and Deepseek-V3, while LLaMA3-70B-Chat-HF is exe-
cuted locally. To ensure deterministic outputs and facilitate stability
evaluation in log generation, we set the temperature to 0.

4.2 ROQ1: Single-Log Generation Scenario

We first evaluate PDLOGGER’s performance on a dataset constructed
by randomly removing only one log statement per method, and
compare it with several state-of-the-art baseline techniques. The
evaluation results are presented in Table 1, with the best results for
each metric highlighted in bold.

For log position, PDLOGGER outperforms all baselines. Specifi-
cally, it improves upon the best-performing baseline, SCLogger [26],
by 29.5% from 0.417 to 0.54. This confirms that our proposed block-
type-based prompting strategy is highly effective. In terms of log
level prediction, PDLOGGER achieves the highest AOD score. Al-
though its accuracy is slightly lower (0.609 vs. 0.613) than that
of LANCE 2.0, it outperforms all other baselines. For log variable
prediction, PDLOGGER surpasses all baselines in accuracy, recall,
and F1 score, demonstrating that the function-aware extension
indeed improves the accuracy of log variable prediction. Regard-
ing the log message, PDLOGGER shows significant improvements
over all baseline methods, surpassing the best baseline by 30.80%
(0.467 vs. 0.37) in BERTScore. These results suggest that by extract-
ing semantic dependency information, our system generates log
messages that better match the project style and more accurately
convey developer intent, making it more suitable for real-world
development.

Answer to RQ1: PDLOGGER can significantly outperform
state-of-the-art techniques, demonstrating strong
effectiveness in the single-log generation setting.

Case Study. Figure 8 presents a case study, with the developer-
written log highlighted, to illustrate the effectiveness of PDLOGGER
in single-log insertion tasks. All four tools correctly identify the
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appropriate log position. However, only PDLOGGER accurately cap-
tures the semantic dependencies, enabling it to generate a log mes-
sage that explains the root cause of result == null.In contrast,
SCLogger and LANCE 2.0 merely record the occurrence of the con-
dition, while the message produced by LANCE lacks any diagnostic
value. Notably, the original developer-written log also attempts to
convey the root cause of result == null, further demonstrat-
ing that the log generated by PDLOGGER is more consistent with
developer intent and can meet practical diagnostic requirements.

Original logging statement

public static void main(String[] args) {
DataProcessor processor = new DataProcessor();
processor.receiveData("Hello World", "User Input");
String result = processor.processData();
if (result == null) {
LOG.error("processData returned null — possible missing or invalid
input data.");
}
}

public static void main(String[] args) {
DataProcessor processor = new DataProcessor();
processor.receiveData("Hello World", "User Input");
String result = processor.processDatal();

public static void main(String[] args) {
DataProcessor processor = new DataProcessor();
processor.receiveData("Hello World", "User Input");
String result = processor.processDatal();

if (result == null) { if (result == null) {
[m(‘md 1o process data due to lack of LOG.warn("processData() returned null
riginal data info"); | result");
} }
} }
PDLogger SCLogger

public static void main(String[] args) {
DataProcessor processor = new DataProcessor();
processor.receiveData("Hello World", "User Input"),
String result = processor.processData();

ublic static void main(String(] args) {
DataProcessor processor = new DataProcessor();
processor.receiveData("Hello World", "User Input"),
String result = processor.processData(); b
if (result == null) { If (result == null) { .
LOG.warn("pro@ssData returned null; aborting
) further processing);

}

LANCE LANCE 2.0

Figure 8: A Case Study in the Single-log Generation Task

4.3 RQ2: Multi-Log Generation Scenario

To evaluate PDLOGGER’s practicality in real-world development,
we assess its performance on a dataset where all log statements are
removed from methods. The modified SCLogger (Multi-SCLogger)
serves as the primary baseline.

As depicted in Table 2, PDLOGGER can vastly outperform Multi-
SCLogger in all four log component generations. In particular, for
log position prediction, we evaluate whether the predicted logs
are neither excessive (causing system overhead) nor insufficient
(providing too little information). Using precision, recall, and F1
score as metrics, we find that PDLOGGER surpasses SCLogger in
both precision and F1 score. Specifically, PDLOGGER improves F1
score by 69.21% (0.621 vs. 0.367). This is primarily because Multi-
SCLogger generates a substantial number of false positives, whereas
PDLOGGER significantly reduces false positives by employing block-
type-based prompting and refinement.

In terms of log level prediction, PDLOGGER surpasses SCLogger
in both level accuracy (L-ACC) and AOD, with improvements of
82.2% and 26.5% respectively. These results indicate that semantic
dependency information can also assist PDLOGGER in assessing
the importance of log statements and predicting appropriate log
levels. For log variable prediction, PDLOGGER achieves remarkable
gains with an F1 score improved by a whopping 135% (0.657 vs.
0.28). Regarding log message generation, PDLOGGER significantly
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Table 1: Results in the Single-Log Prediction Setting.

Model Position | Logging Levels Logging Variables Logging Texts
PA L- ACC | AOD | Precision | Recall F1 BLEU-1 | BLEU-4 | ROUGE-1 | ROUGE-L | BERTScore
SCLogger 0.417 0.573 0.807 0.535 0.613 0.571 0.474 0.201 0.354 0.34 0.341
LANCE 0.341 0.59 0.747 0.286 0.302 0.294 0.514 0.184 0.275 0.273 0.357
LANCE2.0 0.383 0.613 0.775 0.311 0.397 0.349 0.544 0.182 0.315 0.297 0.37
[ PDLoGGER | 0.54 0609 [0815] 0589 [ 0.638 [0.607 [ 0514 | 0235 [ 0442 | 042 0.467
Table 2: Results in the Multiple-Log Prediction Setting.
Model Position Logging Levels Logging Variables Logging Texts
ode
Precision | Recall | F1 L- ACC | AOD | Precision | Recall | F1 | BLEU-1 | BLEU-4 | ROUGE-1 | ROUGE-L | BERTScore
Multi-SCLogger 0.24 0.784 | 0.367 | 0.446 | 0.739 0.283 0315 | 0.28 | 0438 0.174 0.384 0.375 0.324
PDLOGGER ‘ 0.575 ‘ 0.674 ‘ 0.621 ‘ 0.813 ‘ 0.935 ‘ 0.656 ‘ 0.657 ‘ 0.657 ‘ 0.57 ‘ 0.315 ‘ 0.487 0.469 0.537

outperforms SCLogger, with a BLEU-4 score of 0.314 (45.4% higher)
and a BERTScore of 0.544 (52.1% higher). These gains stem from
PDLOGGER s effective capture of semantic dependencies, allowing it
to better capture developer intent and produce semantically aligned
log messages, unlike SCLogger’s heuristics-based random sampling
of callers and callees.

Answer to RQ2: By constructing block-type-based structured
prompts and capturing semantic dependencies, PDLOGGER
significantly outperforms Multi-SCLogger across all four
dimensions: position, level, variable, and message, in a more
practical multi-log generation scanrio.

Case Study. Figure 9 presents a case study illustrating the effective-
ness of PDLOGGER in the multi-log generation scenario. The ground
truths have been highlighted. For log position, both tools achieve
100% recall. However, PDLOGGER ’s block-type-based prompting
yields only one false positive (66.6% precision), compared to five
from Multi-SCLogger (28.6% precision). Regarding the log message,
for the first log, Multi-SCLogger generates a superficial message
that fails to explain the root cause of the push data failure. In con-
trast, PDLOGGER captures the semantic dependencies and attributes
the issue to a prior operation by another server, closely matching
the ground truth. Moreover, PDLOGGER correctly predicts the log
level and variable, while Multi-SCLogger does not. For the second
log, while both tools generate accurate messages and levels, Multi-
SCLogger mispredicts one variable (path).

4.4 RQ3: Ablation Study

We further conduct an ablation study to demonstrate the effective-
ness of five major design choices in PDLOGGER: block-type prompts,
semantic-dependency, function-aware extensions, deduplication,
and level refinement. We then create five variants, each with one
design choice removed!, and compare them against the full-fledged
PDLOGGER.

As shown in Table 3, removing block-type-based prompting
increases the number of false positive positions nearly fourfold.
Leading to a sharp decline in precision (-58.3%) and level accuracy

! As semantic slicing depends on block-type prompts, we use the first eligible line in
the same block as the slicing entry when block-type prompting is removed.

private synchronized void pushToZK(byte[l newSecret, byte[]
currentSecret, byte[] previousSecret) {
} catch (KeeperException.BadVersionException bve) {
LOG.debug("Unable to push to znode; another server already did
it");
} catch (Exception ex) {
LOG.error("An unexpected exception occurred pushing data to
ZooKeeper", ex);
}
}

Original logging statement

private synchronized void pushToZK(byte[] newSecret, byte[] currentSecret,
byte[] previousSecret) {
byte[] bytes = generateZKData(newSecret, currentSecret, previousSecret);
1 [LOG.debug("Preparing to push new secret data to ZooKeeper"); |
try {
client.setData().withVersion(zkVersion).forPath(path, bytes);
} catch (KeeperException.BadVersionException bve) {
LOG.debug("Failed to update ZooKeeper node due to version conflict; another|
server may have already pushed the secret.")
} catch (Exception ex) {
LOG.error("Unexpected exception encountered while pushing secret data to
3‘ ZooKeeper", ex); |
}
}

PDLogger

private synchronized void pushToZK(byte[] newSecret, byte[] currentSecret,
byte[] previousSecret) {
LOG.info("Preparing to push data to ZooKeeper at path: {}", path);|
LOG.debug("Generated ZooKeeper data payload of length: {I",
(newSecret != null & currentSecret != null && previousSecret != null) ?
generateZKData(newSecret, currentSecret, previousSecret).length : "null input");
LOG.trace("Generated ZooKeeper data payload of length: {}", bytes != null ? bytes.length : 0);]
byte[] bytes = generateZKData(newSecret, currentSecret, previousSecret);
try {
4 |_LOG.trace("Attempting to set ZooKeeper data with version: {}", zkVersion);
client.setData().withVersion(zkVersion).forPath(path, bytes);
LOG.info("Successfully pushed data to ZooKeeper path: {}", path);
} catch (KeeperException.BadVersionException bve) {
6 | LOG.warn("Failed to push data to ZK due to version conflict (expected version: {})", zkVersion); |
} catch (Exception ex) {
7 [ LOG.error("Unexpected error while pushing data to ZK at path {}", path, ex); |
}
}

N

w

Multi-SCLogger

Figure 9: A Case Study in the Multi-Log Generation Scenario.

(-29.3%), primarily due to inaccurate slicing entry points, which
result in uninformative or even misleading semantic slices. Remov-
ing the semantic dependency extension substantially degrades the
quality of log messages. For example, BERTScore drops by 15.1%,
indicating that the extension effectively contributes to generating
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Table 3: Ablation Study of PDLOGGER.

Model Position Logging Levels| Logging Variables Logging Texts
Precision|Recall| F1 |L- ACC| AOD |Precision|Recall| F1 |BLEU-1BLEU-4 ROUGE-1ROUGE-LBERTScore

PDLOGGER 0.575 0.674 |0.621| 0.813 | 0.935 0.656 | 0.657 |0.657| 0.57 0.315 0.487 0.469 0.537

w/o Block-type-based 0.246 | 0718 |0366| 0575 | 0.798 | 0.443 | 0.492 |0.466| 0.442 | 0.143 | 0332 0.317 0.473
Structured Prompt Construction

w/o Semantic-dependency Extension| 0.575 | 0.674 |0.621| 0.685 | 0.819 0.413 | 0.411 |0.412| 0.482 | 0.202 0.392 0.374 0.456

w/o Function-aware Extension 0.575 0.674 |0.621| 0.606 | 0.768 0.56 0.559 | 0.56 | 0.538 | 0.253 0.428 0.411 0.493

w/o Deduplication 0.489 0.704 |0.573| 0.813 | 0.935 0.656 0.657 |0.657| 0.572 0.314 0.498 0.474 0.544

w/o Log-Level Refinement 0.575 0.674 {0.621| 0.733 | 0.833 0.656 0.657 [0.657| 0.57 0.315 0.487 0.469 0.537

Target Method

public static void main(Stringl] args) {
String result = processor.processDatal);
if (result == null) {
LOG.warn("processData returned null —
possible missing or invalid input data.");
}
}

sl LOG.warn("Processing returned null result");

W/0 Semantic-dependency E

-, LOG.warn("Failed to process data due to lack of
original data info")
Standard Setting

~

(a) Semantic-dependency Extension Removed

Target Method

protected void processDelivery(final Delivery delivery, Buffer
deliveryBytes) throws Exception {
message.setMessageld(messageld);
LOG.trace("Inbound Message:{} from Producer:{}",
message.getMessageld(), getProducerld() + ":" +
messageld.getProducerSequenceld());

LOG.debug("Set message ID to {} (original AMQP message ID

was: {})", messageld, amgpMessageld);

W/0 Function-aware Extension

LOG.debug("Producer {} assigned Messageld {} (seq: {})",
md getProducerld(), message.getMessageld(),
messageld.getProducerSequenceld());

Standard Setting

(b) Function-Aware Extension Removed

Figure 10: Case Study of the Ablation Study

semantically more aligned log messages. Removing the Function-
aware Extension further reduces variable F1 by 14.8%. Without
deduplication, recall for position slightly increases by 4.3%, but
precision drops by 17.59%, leading to an overall F1 score decrease
of 8.38%, confirming its effectiveness in suppressing false positives.
Lastly, excluding level refinement decreases level accuracy by 9.8%,
showing its value in predicting appropriate log levels.

Case Study. Figure 10 presents two cases that demonstrate how
PDLOGGER benefits from each phase of the framework. The high-
lighted lines denote the original log statements. As shown in Fig-
ure 10a, without capturing semantic dependency information, the
variant fails to identify the root cause that leads to the conditional
statement if (result null) being true, and merely generates
a generic log indicating that result is null. However, after incorpo-
rating semantic dependency expansion, PDLOGGER can understand
that the underlying reason for result being null is due to a lack
of original data info, thereby enabling the generation of a more
informative log message that facilitates and accelerates system
debugging during development.

In the case shown in Figure 10a, without applying function-
aware extension to the target method, PDLOGGER cannot include
relevant functions in the variable candidate list. With an explicitly

provided function list, PDLOGGER autonomously selects appropriate
functions as variables, thereby producing higher-quality logging
statements, as shown in the green box.

PDLOGGER can leverage log level refinement to correct inap-
propriate log levels. For example, adjusting an improper debug
level in LOG. debug("Failed to process data due to lack of
original data info") to error, to alert developers to a potential
failure rather than simply providing debugging information.

Answer to RQ3: Ablation results indicate that each major
design choice in PDLOGGER plays a critical role in the overall
effectiveness.

4.5 ROQ4: Generalizability Study

To evaluate PDLOGGER ’s generalizability, we deploy it on three
widely used and representative LLMs: OpenAl 03-mini, Deepseek-
Chat, and LLaMA-3-70B-chat. Note that OpenAl 03-mini is the
default backbone used in PDLOGGER.

As shown in Table 4, PDLOGGER consistently outperforms SCLog-
ger across all tested models, demonstrating strong generalization
capabilities. On average, PDLOGGER improves log position predic-
tion F1 score by 108.4%, log level accuracy by 76.4%, log variable
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Table 4: The Performance of PDLoGGER and SCLogger with Different Backbone Models.

Model Approach Position Logging Levels Logging Variables Logging Texts
Precision | Recall F1 L-ACC | AOD | Precision | Recall F1 BLEU-1 | BLEU-4 | ROUGE-1 | ROUGE-L | BERTScore

PDLOGGER 0.575 0.674 0.621 0.813 0.935 0.656 0.657 0.657 0.57 0.315 0.487 0.469 0.537
O3-mini SCLogger 0.24 0.784 0.367 0.446 0.739 0.283 0.315 0.28 0.438 0.174 0.384 0.375 0.324
A 139% -16.3% 69.2% 82.3% 19.6% 131.8% 108.5% | 134.6% 30.1% 81% 26.8% 25.1% 65.7%
PDLOGGER 0.548 0.646 0.593 0.729 0.853 0.605 0.588 0.597 0.482 0.243 0.408 0.394 0.485
Llama-3-70b SCLogger 0.142 0.844 0.243 0.424 0.691 0.416 0.501 0.455 0.41 0.125 0.325 0.319 0.428
A 285.9% -23.5% | 144.0% 71.9% 23.4% 45.4% 17.4% 31.2% 17.6% 94.4% 25.5% 23.5% 13.3%
PDLOGGER 0.523 0.658 0.583 0.749 0.891 0.463 0.437 0.45 0.468 0.21 0.416 0.394 0.456
Deepseek-chat | SCLogger 0.16 0.982 0.275 0.428 0.68 0.44 0.49 0.464 0.423 0.137 0.359 0.349 0.355
A 226.8% -32.9% 112% 75% 31% 5.2% -10.8% -3.0% 10.6% 53.3% 15.9% 12.9% 28.5%

F1 score by 54.3%, and log message BERTScore by 60.3%. Further-
more, models with stronger comprehension capabilities, such as
OpenAl 03 mini, exhibit greater performance when integrated with
PDLOGGER.

Answer to RQ4: PDLOGGER maintains high effectiveness in
log generation when used with different LLMs, showcasing
strong generalization capabilities across backbone models.

5 Discussion

Practical Implications. The adoption of an automated logging
solution hinges on deployability. PDLOGGER automatically injects
an appropriate number of high-quality log statements into projects
without any logs— functionality absent from prior approaches. De-
velopers input only their source code, and PDLOGGER outputs a
predicted-log augmented project with no extra effort. This sub-
stantially reduces developers’ workload and mitigates the common
problem of “after-the-fact” log insertion. Thus, PDLOGGER inte-
grates into workflows at a low cost and high level of automation,
offering strong practical value.

Limitations. Two main limitations arise. (i) Evaluation uses mostly
Java projects, leaving cross-language generality uncertain; yet our
technique is language-agnostic and could transfer with moderate
adaptation. (ii) The pipeline struggles when several logs should
be placed in one block. Future work should explore reducing false
positives in multi-log scenarios.

Threats to Validity. Given that PDLOGGER relies on large language
models (LLMs) during processing, it raises data-leakage risks for
proprietary code. Mitigations include asserting code copyright,
running LLMs offline, and evaluating leakage risk before adoption
in closed-source projects.

6 Related Work

Logging Practices. Software logs are indispensable for understand-
ing system behaviour and diagnosing failures. According to [53],
logs appear every 30 lines of code on average and improve fault
diagnosis efficiency by 2.2x.

However, [11] finds that commits involving log insertions are rare
in version-control history, suggesting that most logs are added
retrospectively. Recent work [24] shows that large language models
(LLMs) are effective for automatic log-statement generation. A key
challenge is balancing log quantity: too many logs cause runtime
overhead [8], while too few risk missing critical information [3],

hindering diagnosis. To bridge this gap, this paper proposes the
PDLOGGER.

Automated Logging Statements. Research on automated logging
traditionally divides the task into predicting the log position, level,
message and variable. For log-position prediction. A variety of
methods seek to identify suitable insertion position [21, 29, 52, 60].
While [60] learns developers’ habits from existing repositories, it
does not incorporate rich contextual information. [29] observes that
logging decisions depend on both syntactic structure and semantic
context, yet its contextual modelling excludes inter-procedural or
cross-method information.

For log-level recommendation, severity prediction is addressed
by [30, 33], which employ machine-learning techniques to recom-
mend appropriate log levels. For log-message generation, high-
quality, context-aware messages are produced by [10, 13]. For log-
variable selection, variable-selection strategies are explored in [34].

Although component-wise methods have advanced the field,
they lack end-to-end pipelines. Recent holistic systems [26, 37, 47,
48,56] generate complete logs but have limitations: [37] offers a Java
method-level solution with limited context, and [26] extends static
context but lacks semantic dependencies and variable handling. Ex-
isting end-to-end approaches remain impractical for real-world use.
We propose a practical, deployable method that inserts appropriate
high-quality logs into initially log-free projects.

7 CONCLUSION

In this paper, we introduce PDLOGGER, the first automatically log
generation approach that is practically applicable to real-world soft-
ware development. PDLOGGER incorporates semantic dependency
information and variables within function scope into language mod-
els through block-type-based prompt construction. Moreover, it
employs deduplication and level refinement strategies to ensure its
usability in practical development scenarios. Experimental results
demonstrate that PDLOGGER outperforms all baseline methods in
overall performance and can be effectively adapted to a wide range
of LLMs. We believe that PDLOGGER can enhance developer pro-
ductivity and provide valuable insights for researchers in the field
of automated log generation.
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